GENERAL CATALOGUE

- power T\&D

Secondary and Primary Distribution Protection

- Dual \& Self Powered Relays
- Overcurrent \& Earth Fault Protection Relays
- Feeder / Generator Protection Relays

IEC 61850

- protection \& control

Protection \& Control

- Electronic Protection \& Control Relays for Motors, Generators and Pumps
- Control \& Measurement
- Earth Leakage Protection Relays
- Transformers
- Surge Protection

The last decade has been a period of strong growth and international expansion for Fanox, making us one of the leading companies specializing in the design and manufacture of electronic relays for Low and Medium Voltage applications.

Since its founding back in 1992, we have developed a wide range of products for multiple applications in the low voltage sector, designing and launching new products to the market every year. These products have always been designed with one major focus; namely to reduce and save high installation and running costs for end user.

FANOX' international growth, has also led to expansion into the medium sector. Our MV Division is now one of the main focus areas of development, thanks to the decisive contribution of a highly qualified R\&D department.

Resting on a strategy of sustainable growth, solid management capabilities and a very high technological potential, Fanox meets the future with a solid outlook, where we will be able to respond successfully to challenges thrown at us.

With the Quality Management System based on ISO 9001:2008 Fanox guarantees the highest quality services and products to its customers' satisfaction.

Fanox products meet the most relevant international standards. We carry the CE marking and have UL approvals (Underwriters Laboratories) for USA, c-UL for Canada and the PTB (Physikalisch-Technische Bundesanstalt) for EEx e motors working in explosive atmospheres (ATEX Certified).

Fanox' human resources have undergone a tremendous growth over the past decade, becoming a highly specialized team with high capacity for adaptation and development. It is a multicultural team which faces the challenges set by a strategic business plan which has its people and integrity as its main values.

FANOX PRODUCTS

POWER T\&D

Index

power T\&D

Why is Fanox the world's leading manufacturer of SELF POWERED Relays? 7
Evolution of RMU's Protection Relays 8
Some success applications for our SIA-C Relay 10
Introduction to SIA \& SIL relays 11
Protection functions, common features and Standards 12
Relay Selection guide 16
Relay Application guide 18
PRODUCT SPECIFIC INFORMATION
SIA-B (Dual \& Self powered)
OC\&EF Protection for Secondary Distribution 20
Main characteristics 20$\%$
Technical specifications 20
Selection \& Ordering data 23
SIA-C (Dual \& Self powered)
OC\&EF Protection for Secondary Distribution 24
$\therefore 1$
Main characteristics 24
Technical specifications. 25
Selection \& Ordering data
Selection \& Ordering data 29 29
SIA-A/SIA-E (Dual \& Self powered)
OC\&EF Protection for Secondary Distribution 30
-

Main characteristics 30
Technical specifications 31
Selection \& Ordering data 33
SIA-F
OC\&EF Protection for Secondary Distribution 34
Main characteristics 34
$\%$ Technical specifications 34
Selection \& Ordering data 37
(4)
(4)
(14)

SIA-D
OC\&EF Protection for Secondary Distribution

Main characteristics 38
Technical specifications
Selection \& Ordering data

SIL-A

OC\&EF Protection for Primary Distribution

Main characteristics.
Technical specifications
Selection \& Ordering data

SIL-B

Feeder Protection

Main characteristics
Technical specifications 49
Selection \& Ordering data

SIL-G

Generator Protection.

Main characteristics
Technical specifications
Selection \& Ordering data

Spectalked in Rithg waits Units and Switoligear Protection

Why is Fanox the world's leading manufacturer of SELF POWERED Relays?

Our innovative spirit, the direct care of the market requirements and our extensive experience in the manufacture of protection relays, have made our Self Powered Relays a reference worldwide.

The relays include the latest technology: LCD, keyboard, event recording, SCADA communication, PC software ...
Utilities worldwide have relied on our technology for over 20 years.

Main advantages over other brands:

- The relays are self powered by the operating current. No batteries, chargers or any other external power sources are required. This means that the maintenance of transmission and distribution centers is heavily reduced.
- High electromagnetic compatibility makes FANOX relays the safest in the market. KEMA certification proves it.
- 5 years warranty al least.
- Standard CTs /1A or /5A can be used saving money.
- The energy available to trip the striker is the highest in the market: $24 \mathrm{~V}-135 \mathrm{~mJ}$.
- Possibility of SCADA communication for all relays.
- Very intuitive menu, extremely easy to adjust.
- Our flexible design offers solutions for all the applications worldwide: coils,strikers, dual-powered installations..
- No one in the market gives more quality and specifications with so competitive prices.

Besides, all models can be powered from an external battery, in order to make easier the commissioning and start-up of installations, to manage the incidents that may occur and also to manage the devices in adverse conditions.

Solutions for the Smart Grid and Predictive Maintenance Network

Our relays incorporate new industry trends in remote communication protocols for automatized substations.

Evolution of RMU's Protection Systems

SIA-C Self and Dual Powered protection relay is the most effective protection relay for SF6 RMUs for secondary distribution (up to $13.8 \mathrm{kV}, 17.5 \mathrm{kV}, 24 \mathrm{kV}$ or 34.5 kV). Its applications are quite varied.

But first of all...

What is a RMU?

We can define a Ring Main Unit as a standard piece of switchgear in distribution systems comprising of switches for switching power cable rings and of switches in series with fuses or circuit breakers for the protection of distribution transformers.

Breaking components:
1 Vacuum Circuit Breaker
2 Earth switch
3 Ring Switch with remote control
4 Ring Switch with remote control
5 Self Powered relay protection

Changes and developments

RMUs protection systems have experienced in recent years an outstanding development and modernization. Protection, control measurement, communication in addition to the need of simplify the maintenance of the installations are behind the current trend of change.
Switchgears and RMUs need to be firmly and safely under control and traditional RMUs based on switches with fuses don't meet the requirements of the market.

The need for electronic devices without maintenance has passed from a desire to a necessity.
RMUs based on switches with 3 fuses are being substituted by SF6 circuit breakers and self powered protection relays. This way, batteries are removed, events and alarms of the RMU are stored in the relay and the Grid can be remotely motorized thanks to the communications that FANOX's protection relays have.

In most cases there is a lack of access to the installation. Not all facilities are roadside. Some are buried, or in areas of difficult access where replacing a fuse can entail a big problem.
Circuit breaker can be opened by the action of tripping coils or tripping strikers. When self powered relays are installed in the SF6 RMUs, the circuit breaker is opened by the action of a tripping striker that is activated by a 24 V supply that the self powered relay provides.

The striker is an electromagnet that is loaded at the closing of the switchgear, and is required lowenergy trigger to release them. Different models and tensions, and in general the selection of it is a compromise between mechanical security and tripping energy, but in general are a reliable and high quality element.

RMUs for primary distribution have a capacity of up to 50kA short circuits, rated currents up to 4000A. They usually use vacuum circuit breakers and air isolation.

RMUs for secondary distribution have a capacity of up to 21 kA short circuit, rated currents up to 630A. They usually use vacuum circuit breakers and SF6 isolation.

All these improvements are focused in having the installation under the safest control and in saving cost in terms of material and personnel.
Fanox as a specialist in SELF POWERED relays, is the best ally to adapt your switchgear to what market demands.

Some success applications for our SIA-C Relay

- Withdrawable Self powered model with a very compact size makes the installation and maintenance much easier.

- Standby Earth Fault Relay model designed as a backup protection to clear a remote earth fault on the downstream network. This relay performs 50P + 50/51P + 50N/G + 50/51N/G functions and shows 3 magnetic flags in its front indicating the tripping reason.

- Perfect solution for RETROFIT applications. Combined with TCM adapter this application is performed in these RMUs where the existing protection relay is replaced with a new generation digital relay like FANOX SIA-C.

The auxiliary power of the RMU energizes the TCM that activates the coil when the relay detects a fault condition.

RMU manufacturer do not require changing the existing circuit breaker and coil, SIA-C along with TCM adapter work as one supplying the energy needed to trip the coil. TCM provides the most common variety of auxiliary voltages that coils require: $48 \mathrm{Vdc}, 110 \mathrm{Vdc}$ or 220 Vdc .

- Ring Main Unit used for Metering (MRMU) for MV applications ($13.8 \mathrm{kV}, 36 \mathrm{kV}$ and 38 kV) in a busbar rating up to 630A.
In this application a protection relay is included to protect the line by tripping the circuit breaker of the position, apart from voltage and current meter or energy analyzer.
Many MRMU manufacturers provide a 24 Vdc auxiliary power supply so the SIA-C Self and Dual Powered Relay at 24 Vdc is the appropriate solution.

Self \& Dual powered

Protection relays for Secondary Distribution. SIA

The range of SIA relays is designed to protect the secondary transformer and distribution substations of electrical networks. Features include protection against instantaneous and inverse time overcurrent (for phase and neutral) as well as an external trip support (temperature, pressure, etc.) for certain models.
The protection functions can be enabled by using both control panel and the communications link to the SICom progamme. Combining the setting and IEC curves available, allows for precise coordination with other equipment.

Dual \& Self powered protection relays

The outstanding feature of the SIA-C, SIA-B, SIA-E and SIA-A models is that they are dual/self-powered and function by employing the operating current of the installation. This means that maintenance of transformer and distribution substations is heavily reduced. All batteries, chargers and other external power elements are made redundant.

Furthermore a great advantage is that these relays ease commissioning and start-up of installations, and also make it easier to manage the equipment in adverse conditions. All models can be powered from an external battery portable kit (KITCOM), guaranteeing total operation of the relay, including trip functions occurring due to external faults

Protection relays for Primary and Secondary Distribution. SIL

The Energy sector is now in process of a deep transformation all over the world. Due to the high demand of energy, new distribution lines are needed as well as advanced systems of supervision. Assuming the need of intelligent infrastructures, FANOX has developed SIL family in order to perform this function.
Relays of SIL family, formed by SIL-A and SIL-B, are designed for protection of primary and secondary switching substations of electric distribution network. The protection features include protection against overcurrent (SIL-A and SIL-B), overvoltage (SIL-B) and undervoltage (SIL-B) but always with the option of reclosing in both models (SIL-A and SIL-B).
The protection functions can be enabled by using both the front panel and the communications link to the SICom programme.

The combination of the available IEC and ANSI curves and settings allows a precise combination with other equipments.
One advantage over other equipments available on the market is that SIL relays facilitate the start-up of installations and the carrying out specific operations in adverse conditions.

Communication protocols

Our relays incorpórate new industry trends as remote communication to facilitate the implementation of Smart Grid and predictive maintenance network:

IEC 61850
IEC 60870-5-103
IEC 60870-5-104
DNP3.0
ModBus RTU

Protection functions \& Standards

Function 50P

Instantaneous phase overcurrent
Function 50N and 50N/G
$50 \mathrm{~N}=$ Instantaneous neutral overcurrent internally calculated $\left(l_{A}+l_{B}+l_{C}\right)$
50N/G = Instantaneous neutral overcurrent measured

Function 50/51P

Inverse time phase overcurrent

Function 50/51N and 50/51 N/G

$50 / 51 \mathrm{~N}=$ Inverse time neutral overcurrent internally calculated $\left(I_{A}+I_{B}+I_{C}\right)$
50/51 N/G = Inverse time neutral overcurrent measured

Curves IEC 60255-151 and ANSI

Standard curves are used for the protection functions - 50/51P, 50/51N, 46, 67P y 67N:

- Normally inverse
- Very inverse
- Extremely inverse
- Definite time

Function 49

Thermal overload protection.

Function 49T (External Trip)

There is a direct trip input, normally associated with a bimetallic contact that is fitted to the power transformer, which serves as a backup for the current functions. In order for it to be a real backup, this input is not related to the protection processors. This means that the processors do not read the input and trip the striker, but the input acts directly on the striker, remaining operational for as long as the equipment is powered. This input is especially protected against electromagnetic noise.

Function 81U

Underfrequency protection

Function 810

Overfrequency protection

Function 25

Synchronism check

Function 46

Inverse time negative sequence overcurrent

Function 59P

Defined time phase overvoltage

Function 59N

Defined time neutral overvoltage

Function 27P

Defined time phase undervoltage

Function 37

Phase undercurrent

Function 32/40

Defined time directional overpower

Function 79, auto-recloser

This function is the responsible of reclosing the breaker when a fault occurs.

Function 67P

It uses the voltage between phases as the polarization magnitude and the phase current as the operating variable. If the directional function 67P is not enabled, it behaves as a $51 / 50 \mathrm{P}$ function.

The operative time starts when the following conditions are met simultaneously:

- Polarization voltage higher than setting
- Phase current higher than setting
- Gap between phase current and polarization voltage is such that the phase current is within the area of the intervention.

Function 67N, Neutral directional protection

It uses the residual voltage as the polarization magnitude and the residual current as the operating variable. If the directional function 67 N is not enabled, it behaves as a 50/51 N/G Function. The operative time starts when the following conditions are met simultaneously:

- residual voltage higher than setting
- residual current higher than setting
- the gap between the residual current and residual voltage is such that the residual current is within the area of the intervention.

Trip Block for Switch disconnector protection

Many transformation centers have a disconnector as a break element. As line breakers have a limited opening current, with short-circuit events at high currents the responsibility for opening falls on the fuses, because otherwise, opening the line breaker would mean destroying it. In order to deal with these situations, tripping either in phase or neutral is blocked when the measured current exceeds a preset value.

Function 68, Logical Trip bus

Function 68 allows the creation of a coordinated net of equipments installed in different levels of the line which enables the blocking or the tripping and whose objective is clearing the fault in the least damaging place of the application.

Function 86

Function 86 allows to latch (lock out) the contact trip due to programmable logic (PLC).

Function 52

This function allows monitoring of circuit breaker state and makes a preventive maintenance.

Function 50BF

This function allows showing a possible error of the circuit breaker opening.

Function 74TCS, Trip Circuit Supervision

This function allows the supervision of breaker's trip circuit.

Function CLP, Cold Load Pick-up

This unit is used in order to avoid non-desirable operations of overcurrent functions when the line is not energized.

Function 74CT

Current transformer supervision

Function 46BC

Open phase detection

MEASUREMENTS

Phase and neutral are measured with an accuracy of $\pm 2 \%$ over a band of $\pm 20 \%$ of nominal and $\pm 4 \%$ over the rest of the measurement range. The measurement range is from 0.02 until 30 times nominal current.

TIME SYNCHRONIZATION

- IRIG-B: GPS Time Synchronization Protocol
- Communications protocol synchronization.

SETTINGS GROUPS

The relay has up to 3 settings groups for the protections settings.

HMI

The HMI consists of:

- A 20×2 LCD screen with alphanumeric characters that allow the equipment parameters to be set (adjusted) and monitored (measurements, statuses, events).
- A membrane keyboard with six keys that allow you to navigate the menus and access information of interest. A seventh button "RESET", allows you to reset the bistable and led indicators and the events log. For security reasons, an access code is needed to modify the settings.
- LED indicators showing the type of power supply being used at all times. The relay can use more than one power source at one time.
- Bistable magnetic indicators that signal the cause of tripping. These indicators remain in position when the equipment loses power, reducing the time the maintenance service needs to identify the cause of tripping.

EVENTS RECORD

Events are recorded and ordered chronologically (up to 1024), allowing you to analyse what has happened with the installation over time (start-ups, tripping power supplies, etc.). They are recorded chronologically to the nearest millisecond in real time, thanks to the Real Time Clock (RTC). Events can be recorded on a non-volatile FRAM memory.

FAULT REPORT

A fault report is a record of specific events in the period of time when a fault occurs. Having a specific events record for the fault period is a significant help to resolve an incident.

OSCILLOGRAPHY RECORDS

The relay stores up to 5 oscillographic logs and 20 fault reports, with a resolution of 16 samples/cycle. The oscillography can be downloaded by communications through the Modbus protocol. The SICom communications program allows the oscillography to be downloaded and saved in COMTRADE format (IEEE C37.111-1991).

COM PORTS

The relay has up to 3 communication ports in different format: USB, RS232, RS485, FOP, FOC, RJ45 (Ethernet).

COM PROTOCOLS

The relay supports the different protocols: ModBus RTU, IEC60870-5-103, IEC60870-5-104, DNP3.0 (TCP/IP), IEC61850.

COMMUNICATIONS

The relays have a communication local port on the front of the equipment and rear ports on the back for remote communication. The SICom software with Windows® 2000/XP and Windows® 7 uses a graphic user interface to allow you to access all equipment information, modify the settings and save events.
The software can be used locally by using the front port or remotely by using the rear RS485 port when the protocol is ModBus RTU.

TEST MENU

This allows you to use the HMI to verify correct operation of the LEDs, the bistable magnetic indicators, the trip contact and the outputs.
Activating the trip contact from the test menu allows you to verify correct operation of the opening mechanism simply.

SELF-DIAGNOSIS

Diagnostic algorithms to generate the corresponding events are executed on starting up the equipment and all the time the relay is operating.

Protection functions \& Standards

- EMC requirements - Emission

Test Name	Relay Test	LEVELS
Radiated emission	$\begin{gathered} \text { IEC 60255-26 } \\ \text { EN 55022 } \\ \text { EN } 55011 \end{gathered}$	Radiated emission limit for Class A (group 1 for EN 55011) on Enclosure port. Frequency range 30 MHz - 230 MHz (Quasi Peak $40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$). Frequency range 230 MHz - 1000 MHz (Quasi Peak $47 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$)
Conducted emission	$\begin{gathered} \text { IEC 60255-26 } \\ \text { EN 55022 } \\ \text { EN } 55011 \end{gathered}$	Conducted emission limit for Class A (group 1 for EN 55011) on Auxiliary power supply port. Frequency range $0.15 \mathrm{MHz}-0.5 \mathrm{MHz}$ (Quasi Peak $79 \mu \mathrm{~V}$, Avg $66 \mu \mathrm{~V}$). Frequency range $0.5 \mathrm{MHz}-30 \mathrm{MHz}$ (Quasi Peak $73 \mu \mathrm{~V}$, Avg $60 \mu \mathrm{~V}$)

- EMC requirements - Immunity

| Test Name | Relay Test | LEVELS |
| :--- | :--- | :--- |, | Class 3, Repetition frequency 400Hz, Duration of each application 3s. |
| :--- |
| Common mode for all terminals $\pm 2.5 \mathrm{kV}$. Differential mode for all termi- |
| nals excepts Communication port $\pm 1 \mathrm{kV}$ |,

- Product safety requirements (including thermal short time rating)

Test Name	Relay Test	LEVELS

- Burden

Test Name	Relay Test	LEVELS
AC burden for CT	IEC 60255-1	Declared on manual
AC burden for VT		
AC, DC burden for power supply		
AC, DC burden for binary inputs		

- Contact performance

Test Name	Relay Test	LEVELS
Contact performance	IEC 60255-27	

- Communication requirements

Test Name	Relay Test	LEVELS
Communication requirements	ModBus RTU	
	IEC 61850	
	IEC 60870-5-103	
	IEC 60870-5-104	
	DNP 3.0	

- Climatic environmental requirements

Test Name	Relay Test	LEVELS
Cold	IEC 60068-2-1	Cold Operation $\mathrm{Ab},-25^{\circ} \mathrm{C}$, 72 h Cold transport \& Storage Ad, $-40^{\circ} \mathrm{C}, 72 \mathrm{~h}$
Dry heat	IEC 60068-2-2	Dry Heat Operation $\mathrm{Bb},+70^{\circ} \mathrm{C}, 72 \mathrm{~h}$ Dry Heat transport \& Storage Bd, $+85^{\circ} \mathrm{C}, 72 \mathrm{~h}$
Change of temperature	IEC 60068-2-14	Change of Temperature Nb , Upper temp $+70^{\circ} \mathrm{C}$, Lower temp $-25^{\circ} \mathrm{C}, 5$ cycles, Exposure time 3h, Transfer time 2 min.
Damp heat	IEC 60068-2-30	Damp Heat Cyclic Db, Upper temp $+40^{\circ} \mathrm{C}$, Humidity $93 \%, 2$ cycles. Relay energized
	IEC 60068-2-78	Damp Heat Steady State Test Cab, Upper temp $+40^{\circ} \mathrm{C}$, Humidity 85\%, 2 days. Relay not energized

- Mechanical requirements

Test Name	Relay Test	LEVELS
Vibration	$\begin{aligned} & \text { IEC 60255-21-1 } \\ & \text { IEC 60068-2-6 } \end{aligned}$	Vibration response, Class $1,10 \mathrm{~Hz}$ to $59 \mathrm{~Hz}, 0,035 \mathrm{~mm}$ and 59 Hz to $150 \mathrm{~Hz}, 0.5 \mathrm{~g}_{\mathrm{n}}$ Vibration endurance, Class $1,10 \mathrm{~Hz}$ to 150 Hz , $1 g_{n}$
Shock	$\begin{aligned} & \text { IEC 60255-21-2 } \\ & \text { IEC 60068-21-2 } \end{aligned}$	Shock Response, Class 1, $5 g_{\mathrm{n}}$, Shock Withstands, Class 1, $15 \mathrm{~g}_{\mathrm{n}}$
Bump	$\begin{aligned} & \text { IEC 60255-21-2 } \\ & \text { IEC 60068-21-2 } \end{aligned}$	Bump, Class 1, 109 m
Seismic	$\begin{aligned} & \text { IEC 60255-21-3 } \\ & \text { IEC 60068-21-3 } \end{aligned}$	Single Axis Sine Sweep, Class 1, X Axis: 1 to $9 \mathrm{~Hz}, 3.5 \mathrm{~mm}$ and 9 to $35 \mathrm{~Hz}, 1 g_{n}$; Y Axis: 1 to $9 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ and 9 to $35 \mathrm{~Hz}, 0.5 \mathrm{~g}_{\mathrm{n}}$

- Electrical environmental requirements

Test Name	Relay Test	
CT Input continuous overload	IEC 60255-27	3xIn without damage for continuous operation
CT Input short time overload	IEC 60255-27	70xIn without damage for 1s short time overloading
VT Input continuous overload	IEC 60255-27	Declared on manual, without damage for continuous operation
VT Input short time overload	IEC 60255-27	Declared on manual, without damage for 10s short time overloa- ding

- Enclosure protection

Test Name	Relay Test	
Enclosure protection	IEC 60255-27	IP-54

- Quality Management System

Test Name	Relay Test	LEVELS
Quality Management System	ISO 9001:2008	

Product selection guide

	SIA-B	SIA-C	SIA-A	SIA
Auxiliary Supply	$\begin{aligned} & 24 \mathrm{Vdc} \\ & 110 \mathrm{Vac} \\ & 230 \mathrm{Vac} \end{aligned}$	24 Vdc 110 Vac 230 Vac 48 Vdc $85-265 \mathrm{Vac} / \mathrm{Vdc}$	230 Vac	230 Vac
Self Power Supply	3.2A, 6.4A, 12.8A, 25.6A or 51.2A depending on the CT. (x3)	0,1 ln (x3)	4A (x3)	2 A (x3)
External battery	KITCOM	KITCOM	KITCOM	KITCOM
Consumption	0,5 W	0,5 W	0,5 W	0,5 W
CT	Specific CT	Standard 2,5VA	Dual Core	Dual Core
LPCT				
50P	1	2		1
50N/G		2		1
50 N	1		1	
50/51P	1	1		1
51P			1	
50/51N/G		1		1
50/51N	1			
52				
50BF				
49				
49T	1	1	1	1
79				
46				
CLP				
74TCS				
Trip Block	1		1	1
68 (Trip Bus)		1		
86		\checkmark		
74 CT				
46BC				
Programmable Logic		V3		
50/51/67N				
50/51/67P				
37				
59P				
59 N				
27P				
32/40				
81U/0				
25				
81R				
78				
IRIG-B				
Counters				
Commands				
Sett. Group	2	3	1	1
Inputs	1	2	1	1
Outputs	1	$2+1$	1	1
Output for STRIKER	$24 \mathrm{Vdc}-135 \mathrm{~mJ}$	$24 \mathrm{Vdc}-135 \mathrm{~mJ}$	$6 \mathrm{Vdc}-4 \mathrm{~mJ}$	$6 \mathrm{Vdc}-4 \mathrm{~mJ}$
LEDs	2+1MAG.FLAGS	3+3 MAG.FLAGS	3+3 MAG. FLAGS	3+3 MAG. FLAGS
HMI	20X2 LCD + 7 keys			
52 \& 79 HMI				
Event	100	1024	100	100
Fault Report	4	20		
Oscillography				
Local Port (frontal)	USB	RS232	RS232	RS232
Remote Port (rear)		RS485		
Communications Protocols	ModBus RTU	ModBus RTU	ModBus RTU	ModBus RTU
Size of	$4 \mathrm{U} \times 1 / 4$ rack	$\begin{aligned} & 4 \mathrm{U} \times 1 / 3 \mathrm{rack} \\ & 4 \mathrm{U} \times 3 / 5 \mathrm{rack} \end{aligned}$	$5 \mathrm{U} \times 1 / 3$ rack	$4 \mathrm{U} \times 1 / 2 \mathrm{rack}$

OC \& EF

PRODUCT APPLICATION GUIDE

SIA-B

SIA-C
SIA-A
SIA-E
SIA-F

SIA-D

SIL-A
SIL-B
SIL-G

Overcurrent and Earth Fault Protection Relay for Secondary Distribution

Main characteristics

- The SIA-B is a Dual \& Self powered overcurrent protection relay using the operating current through three specific current transformers fitted on the lines. These transformers are also used to obtain current measurements. Optionally, SIAB relay can be used with auxiliary power supply ($24 \mathrm{Vdc}, 110 \mathrm{Vac}$ or 230 Vac). The equipment can be occasionally supplied by an external battery portable kit (KITCOM).
- 50P, 50/51P, 50N, 50/51N protection functions.
- Trip block for switch disconnector + 49T + 49 as optional.
- Its compact size makes SIA-B really easy to install and its light weight helps the customer to save costs in transport.
- Low power consumption (0.5 W, 24 Vdc).
- Non-volatile RAM memory in order to store up to 100 events.
- USB connection on the front (Modbus RTU communication protocol).
- There are bistable magnetic indicators which indicate the trip cause, maintaining their position even though the relay loses the supply (flags).
- In self powered modes, SIA-B starts-up from 0.4 Is of primary three phase current using specific CTs.

Technical specifications and dimensions of this CT in page 22-23.

Functions diagram SIA-B

- 3 CT power supply-measurement Striker

Technical specifications SIA-B

Connections diagram SIA-B

	Permission: yes/no
	Operating range: 0.20 to $20 \mathrm{x} \mathrm{Is} \mathrm{(step} \mathrm{0.01)}$
	Operating time: 0.02 to 300 s (step 0.01 s)
Function 50P	Activation level 100\%
	Deactivation level 90\%
	Instantaneous deactivation
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
	Permission: yes/no
	Operating range: 0.20 to $20 \mathrm{x} \mathrm{Is} \mathrm{(step} \mathrm{0.01)}$
	Operating time: 0.05 to 300 s (step 0.01s)
Function 50N	Activation level 100\%
	Deactivation level 90\%
	Instantaneous deactivation
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
	Permission: yes/no
	Operating range: 0.20 to $7 \times$ Is (step 0.01)
	Curves: IEC 60255-151
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to 300 s (step 0.01 s)
Function 50/51P	Dial: 0.05 to 1.25 (step 0.01)
Fund	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 90\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
	Permission: yes/no
	Operating range: 0.20 to $7 \times$ Is (step 0.01)
	Curves: IEC 60255-151
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0,05 to 300 s (step 0.01 s)
Function 50/51N	Dial: 0.05 to 1.25 (step 0.01)
Function 50/51N	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 90\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 49T (*)	Charging time 10 s (optional)

Function 49 (*)	Function permission : yes/no
	Tap: 0.10 a 2.40 Is (step 0.01)
	ζ heating: 3 a 600 minutes (step 1 min)
	ζ cooling: 1 a $6 \times \zeta$ heating (step 1)
	Alarm level: 20 a 99\% (step 1 \%)
	Trip level: 100\%
	Trip reset: 95\% of alarm level
	Timing accuracy: $\pm 5 \%$ regarding theoretical value
Trip Block (*)	Blocking: Yes/no
	Blocking limit: 1.5 to $20 \times \ln$ (step 0.01)
Trip output	$24 \mathrm{Vdc} ; 135 \mathrm{~mJ}$ (activation of the striker or low powered coil)
Frequency	50/60Hz
Current measure	True RMS
	Sampling: 16 samples/cycle
Fault reports	Four fault reports
Communication	USB port: Modbus RTU
Auxiliary supply	$230 \mathrm{Vac}, \pm 20$ \%
	$110 \mathrm{Vac}, \pm 20$ \%
	$24 \mathrm{Vdc}, \pm 20$ \%
Battery supply	With USB KITCOM adapter
Self-power from current	Three phase self-power level: I > 0,4 x Is min
Environment	Operating temperature: -10 to $70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $80^{\circ} \mathrm{C}$
	Humidity: 95\%
Transformers	Power supply and measurement specific CTs
Mechanical features	Metallic box
	Panel Mounting
	1/4. Rack-4U
	IP-54 panel mounted

Technical parameters CT SIA-B

Application	Indoor Use
Class of insulation	Class E
Frequency	$50-60 \mathrm{~Hz}$
Primary Conductor	Cable max. $\varnothing 50 \mathrm{~mm}$
Material	$\mathrm{PU} \&$ PA6.6
Sec. wire diameter	$6 \mathrm{~mm}^{2}$ solid $/ 4 \mathrm{~mm}^{2}$ strand
Test winding	0,288 A Nominal
Burden	$0,1 \mathrm{VA}$

(*) Optional depending on the model

Dimensions and cutout SIA-B

SIA-B											PROTECTION FUNCTIONS $50 \mathrm{P}+50 / 51 \mathrm{P}+50 \mathrm{~N}+50 / 51 \mathrm{~N}$ PHASE MEASUREMENT Defined by General Settings
	0										
		0									NEUTRAL MEASUREMENT Internal measurement
			0								NET FREQUENCY Defined by General Settings
				$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$							POWER SUPPLY Self powered Self powered + 230 Vac (Dual) Self powered + 110 Vac (Dual) Self powered + 24 Vdc (Dual)
					$\begin{aligned} & 0 \\ & 1 \\ & B \end{aligned}$						ADDITIONAL FUNCTIONS $+49$ + Trip Block for switch disconnector
						0					COMMUNICATIONS USB frontal
							$\begin{aligned} & 0 \\ & 1 \end{aligned}$				INPUTS-OUTPUTS 2 led's + trip output (striker) + External trip input (49T) + 1 FLAG
								0			MECHANICAL ASSEMBLY
									$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$		LANGUAGE English, Spanish and German English, Spanish and Turkish English, Spanish and French English, Spanish and Russian
										A	ADAPTATION

Example of ordering code:

SIA B	0	0	0	0	1	0	1	0	B	A

Overcurrent and Earth Fault Protection Relay for Secondary Distribution

Dual \& Self Powered

Main characteristics

KEMAそ

- The SIA-C is a overcurrent protection relay with self powered and dual powered (self + auxiliary) models.
- The relay is self powered using the operating current through three /5 (5VA) or /1 (2.5VA) standard current transformers fitted on the lines. These transformers are also used to obtain current measurements. Optionally, SIAC relay can be used with auxiliary power supply ($24 \mathrm{Vdc}, 110 \mathrm{Vac}, 230 \mathrm{Vac}, 48 \mathrm{Vdc}$ or $85-265 \mathrm{Vdc} / \mathrm{ac}$). The equipment can be occasionally supplied by an external battery portable kit (KITCOM).
- 50P, 50/51P, 50N/G, 50/51 N/G, 86, PLC protection functions.
- 49T and 68 as optional protection functions.
- Specific test menu is provided.
- High electromagnetic compatibility.
- The installation and subsequent maintenance of batteries is eliminated. The operating costs of the centre are reduced.
- In self powered modes, the start-up of the relay from 0.1 times of the nominal current in three phases ensures capacity to trip at low energy levels.
- The line opening mechanism is activated either by means of a striker PRT, operated by the energy supplied by the relay itself, or by a coil using the TCM trip adapter in case it is necessary.
- There are bistable magnetic indicators which indicate the trip cause, maintaining their position even though the relay loses the supply (flags).
- Different sizes of SIA-C relay available by model list to fulfil all the needs of our customers and make the installation easier.
- SIA-C is fitted with the demand of current with the following characteristics:

Number of records: 168
Recording mode circular
Sampling rate (interval): configurable through communications: 1-60 min

- Non-volatile RAM memory in order to store up to 1.024 events and 20 fault report.

Withdrawable Vertical Assembly

Horizontal Assembly

Vertical Assembly

Technical specifications SIA-C

- 3 CT power supply-measurement 1 CT sensitive neutral Striker

- 3 CT power supply

Striker
Withdrawable model

- 3 CT power supply-measurement

1 CT sensitive neutral
Potential free + TCM

Technical specifications SIA-C

Technical parameters SIA-C

Function 50P_1 Function 50P_2 (*)	Permission: yes/no
	Operating range: 0.10 to $30 \times \mathrm{ln}(\mathrm{step} 0.01 \times \mathrm{In}$)
	Operating time: 0.02 to 300 s (step 0.01 s)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0.5 \%$ (greater of both)
Function 50N/G_1 Function 50N/G_2 (*)	Permission: yes/no
	Operating range: 0.10 to $30 \times \ln ($ step $0.01 \times \mathrm{In}$)
	Operating time: 0.02 to 300 s (step 0.01 s)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 30 \mathrm{~ms}$ or $: \pm 0.5 \%$ (greater of both)
Function 50/51P	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step $0.01 \mathrm{x} \ln$)
	Curves: IEC 60255-151
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to 300 s (step 0.01 s)
	Dial: 0.05 to 1.25 (step 0.01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 50/51N/G	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step $0.01 \mathrm{x} \ln$)
	Curves: IEC 60255-151
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0,02 to 300 s (step 0.01 s)
	Dial: 0.05 to 1.25 (step 0.01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)

Function 68 (*)	Available through configurable inputs and outputs thanks to programmable logic
Function 49T (*)	Charging time 10 s
Programmable logic control (PLC)	OR4, NOR4, OR4_LACTH, NOR4_LACTH, OR4 PULSES, AND4, NAND4, AND4_PULSES, OR TIMER_UP, NOR_TIMER_UP, AND_TIMER_UP NAND_TIMER_UP, OR_PULSE, NOR_PULSE AND_PULSE, NAAND_PULSE
Function 86	Allows to latch (lock out) the contact configured like trip due to programmable logic (PLC).
Fault reports	20 fault reports, 16 events in each
Trip output	For Striker: $24 \mathrm{Vdc}-135 \mathrm{~mJ}$ For coil (optionally with TCM adapter): $\begin{aligned} & 250 \mathrm{Vac}-8 \mathrm{~A} \\ & 30 \mathrm{Vdc}-8 \mathrm{~A} \end{aligned}$ Resistive charge $(\cos \phi=1)$
Signalling outputs (*)	Up to 3 configurable outputs
Signalling inputs (*)	2 configurable inputs
Frequency	$50 / 60 \mathrm{~Hz}$
Current measure	RMS
	Sampling: 16 samples/cycle
	Accuracy of 2% on a band of $\pm 20 \%$ over the nominal current and 4% over the rest of the range.
Communication	RS232 port: Modbus RTU
	RS485 port: Modbus RTU (*)
Auxiliary supply (*)	$230 \mathrm{Vac}, \pm 20$ \% / $110 \mathrm{Vac}, \pm 20$ \% / $24 \mathrm{Vdc} \pm 10$ \% / 48Vdc ± 10 \% / 85-265 Vdc-ac ± 20 \%
Battery supply	With adapter (Kitcom) port DB9
Self-power from current	One phase self-power level: $\mathrm{I}>0,2 \times \ln$
Environment	Operating temperature: -10 to $70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $80{ }^{\circ} \mathrm{C}$
	Humidity: 95\%
Transformers	Power supply and measurement CT /5 or /1
Mechanical features	Metallic box
	Panel Mounting
	1/3 Rack - 4 U (mechanics type A, D, E, F and G) 0.6 Rack - 4 U (mechanics type B and C)
	IP-54
Demand of current	Demand of current with the following characteristics: - Number of records: 168 - Recording mode circular - Sampling rate (interval): configurable through communications: 1-60 min - Record format: Date/Time IMAX (in interval) IMAX (actual) IA IB IC IN

(*) Optional depending on the model

Dimensions and cutout SIA-C

Vertical assembly

Mechanical assembly: A, D

Withwadrable Vertical assembly Compact size

Mechanical assembly:
F

Vertical assembly Compact size

Mechanical assembly: E, G

Horizontal assembly

Mechanical assembly: B, C

Example of ordering code:

SIA C	1	5	6	0	0	1	2	2	D	A	A

SIAC 15600122 DAA

Overcurrent and Earth Fault Protection Relay for Secondary Distribution

Dual Powered

Main specifications

- The SIA-A is a Dual powered overcurrent protection relay using the operating current through specific dual-core current transformers, one used for measuring and the other for powering.
- Protection functions: 50N, 51P, 49T, TRIP BLOCK.
- The events are recorded.
- High electromagnetic compatibility.
- Self power allows for the minimisation of costs for installation and maintenance of the centre as there is no need for batteries or other external power supply items.
- SIA-A starts up from 4 A of primary three phase and 10 A of primary single phase with the relay fully operative at this low energy level.
- Its reduced depth of 60 mm makes it easy to install.
- It includes the switch disconnector protection function by means of trip blocking.
- The line opening mechanism is activated by means of a striker PRT operated by the energy supplied by the relay itself.

CT-60-100
Highest voltage/Insulation rating: $0.72 \mathrm{kV} / 3 \mathrm{kV}$
Insulation class: Class B, $130^{\circ} \mathrm{C}$ Short-circuit thermal intensity/Dynamic: 20 kA - $1 \mathrm{~s} / 50 \mathrm{kA}$
Dual Core

$S A-E$

With additional features regarding to SIA-A model

Additional specifications

- It can be powered up from 2 A of primary three phase current.
- It includes 50P and 50/51N/G protection functions.
- It has Neutral input, getting higher sensibility.
- It is provided with Multilanguage menu (English/Spanish/French) and optional Real Time Clock (RTC).
- It is available with remote communication through RS-485 port and Modbus RTU protocol.
- It has different dimensions.

CT-35-60 CT-60-100

Highest voltage/Insulation rating: 0.72 kV/3 kV

Insulation class: Class B, $130^{\circ} \mathrm{C}$
Short-circuit thermal intensity/Dynamic:
20 kA - 1 s / 50 kA
Dual Core

- 3 CT measurement 3 CT power supply Dual Core CT

WARNING
Ground PC to relay ground

Technical specifications SIA-A
 Functions diagram SIA-A

*optional

Technical parameters SIA-A

Function 51P	Permission: yes/no
	Operating range: 3 to 100A primary (step 0.01)
	Curves: IEC 60255-151
	Operating time: Inverse curve, very inverse curve, extremely inverse curve.
	Dial: 0.05 to 1.25
	Curve, activation level 120\%
	Curve, deactivation level 100\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Trip blocking	Blocking level: 300 A or $20 \times 51 \mathrm{P}$ tap (lower of both)
Function 49T	Charging time 10 s
Trip output	$6 \mathrm{~V}-4 \mathrm{~mJ}$ (activation of the strike)
Frequency	$50 / 60 \mathrm{~Hz}$
Current measure	True RMS
	Sampling: 16 samples/cycle
	Accuracy $\pm 2 \%$ over band of $\pm 20 \%$ of rated current and $\pm 4 \%$ over the rest of the range.
Communications	RS232 port: Modbus RTU

Function 50N	Permission: yes/no
	Operating range: 0.5 to 20 A primary (step 0.1)
	Operating time: 0.02 to 300 s (step 0.01)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
Function 50N	Permission: yes/no
	Operating range: 0.5 to 20 A primary (step 0.1)
	Operating time: 0.02 to 300 s (step 0.01)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
External battery	With DB9 KITCOM adapter (9 Vdc)
Self power from current	3 phase self-power level I > 4 A (primary)
Maximum permanent current	200 A primary
Environment	Operating temperature: -10 to $+70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $+80^{\circ} \mathrm{C}$
	Humidity: 95\%
Transformers	Power supply and measurement. Transformers with double core CT-DB
Mechanical features	Metallic box
	Panel mounting
	$160 \times 202 \times 60 \mathrm{~mm}$
	IP-54 panel mounted
Auxiliary Supply	$230 \mathrm{Vac} \pm 20$ \%

SIA-A

[^0]
Overcurrent and Earth Fault Protection Relay for Secondary Distribution

Main specifications

- The SIA-F is an overcurrent protection relay with a switched auxiliary power supply (110-230 Vac / 90-300 Vdc or 24-48 Vdc). The current is measured by using /5 or /1 current transformers. The equipment can be occasionally supplied by an external battery portable kit (KITCOM).
- 50P, 50/51P, 50N/G, 50/51 N/G, CLP, 86 protection functions.
- Trip block for switch disconnector, 49, 49T, 52, 50BF, as optionals.
- High electromagnetic compatibility.
- With circuit breaker control and monitoring (circuit breaker status, number of openings, accumulated amperes, etc.).
- Compact size with reduced depth makes it easier to install and saves costs.
- Low power consumption (0.5 W, 24 Vdc).
- USB connection on the front (Modbus RTU communication protocol).
- The events are recorded and a specific test menu is provided.
- Possibility of external battery power supply (KITCOM).
- There are three configurable LED indicators on the front of the SIA-F equipment. By default, they indicate indicate if the equipment is On (LED ON), if an alarm has happened (LED ALARM) or if a trip has happened (LED TRIP).
- Programmable logic (PLC)
- 2 Oscillographic records, 4 faults reports and non-volatile RAM memory: Stores 200 events with date/time event without power supply thanks to its

Additional information to fault reports

Functions diagram SIA-F

Technical specifications

Technical parameters SIA-F

Function 50P	Permission: yes/no
	Operating range: 0.10 to $30 \times \ln (\operatorname{step} 0.01)$
	Operating time: 0.02 to 300 s (step 0.01 s)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 50N/G	Permission: yes/no
	Operating range: 0.10 to $30 \times \ln$ (step 0.01)
	Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)
	Activation level 100\%
	Deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 50/51P	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step 0.01)
	Curves: IEC 60255-151 and ANSI
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to 300 s (step 0.01 s)
	Dial: 0.02 to 1.25 (step 0,01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 50/51 N/G	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step 0.01)
	Curves: IEC 60255-151 and ANSI
	Operating time: inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.02 to 1.25 (step 0,01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Defined time, activation level 100\%
	Defined time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)
Function 49T(*)	Available through configurable inputs (optional)
Trip block(*)	Blocking: Yes/no
	Blocking limit: 1.5 to $20 \times \ln$ (step 0.01)
Function 68(*)	Available through configurable inputs (optional)
Circuit breaker monitoring(*)	Circuit Breaker state: start, open, closed, error, opening time, opening error, closing time, closing error
	Input 52a and/or input 52b
	Opening and closing command
	Alarm, maximum number of openings: 1 a 10000
	Alarm, accumulated amps: 0 a $100000 \mathrm{M}\left(\mathrm{A}^{2}\right)$
	Excessive repeated openings: 1 a 10000
	Time of excessive repeated openings: 1 a 300 min
Function 50BF(*)	Function permission : yes/no
	Opening failure time: 0.02 to 1.00 s (step 0.01 s)
	Open breaker activation threshold: $8 \% \mathrm{ln}$
	Open breaker reset threshold: 10\% In
	Function start: Device trip, opening failure input activation, breaker opening command activation

CLP	Function permission; yes/no
	Setting groups: 1 to 3 (step 0.01)
	No load time: 0,02 to 300 s (step 0.01s)
	Cold load: 0,02 to 300 s (step 0.01s)
Setting tables	3 setting table
	Activated, by inputs, by communications, by settings
Function 49(*)	Function permission : yes/no
	Tap: 0.10 a 2.40 Inominal (step 0.01)
	ζ heating: 3 a 600 minutes (step 1)
	ξ cooling: 1 a $6 \times \zeta$ heating (step 1)
	Alarm level: 20 a 99\% (step 1)
	Trip level: 100\%
	Trip reset: 95\% of alarm level
	Timing accuracy: $\pm 5 \%$ or ± 2 s (greater of both) regarding theoretical value
Programmable Logic Control (PLC)	OR4, NOR4, OR4_LACTH, NOR4_LACTH, OR4_PULSES, AND4, NAND4, AN̄D4_PULSES, OR_TIMER_UP, NOR_TIMER_UP, AND_TIMER UP, NAND_TIMER_UP, OR_PULSE, NOR_PULS̄E, AND_PULSE, NAND_PULSE
Function 86	Allows to latch (lock out) the contact trip due to programmable logic (PLC).
2 inputs configurable	The same voltage as auxiliary power supply
Configurable outputs	2 configurable outputs
Frequency	50/60Hz
Current measure	True RMS
	Sampling: 16 samples/cycle
	Accuracy of $\pm 2 \%$ in a band of 20% over the rated current and $\pm 4 \%$ for the rest of measurement range
	Saturation limit: 30 times rated current
Oscillography	16 samples/cycle
	Oscillo starting configuration
	2 records: 3 cycles pre-fault and 19 post-fault
	COMTRADE IEEE C37.111-199
	4 analogue channels and 32 digital channels
Communications	USB port: Modbus RTU
	RS485 port: Modbus RTU(*)
Auxiliary power supply(*)	110-230 Vac / 90-300 Vdc $\pm 20 \%$
	24-48 Vdc $\pm 20 \%$
External battery	With USB KITCOM adapter
Environment	Operating temperature: -10 to $70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $80^{\circ} \mathrm{C}$
	Humidity: 95\%
Transformers	3 or 4 standard CT: /5, /1
Mechanical features	Metallic box
	Panel Mounting
	1/4 Rack - 4 U
	Fondo: 74,6 mm
	IP-54 on panel
Fault report	4 fault reports with 16 events each

[^1]Dimensions and cutout SIA-F

Example of ordering code:

SIA F	1	1	0	B	0	1	1	0	C	A

Overcurrent and Earth Fault Protection Relay for Secondary Distribution

Main specifications

- The SIA-D is an overcurrent protection relay with a switched auxiliary power supply (110-230 Vac / 90-300 Vdc or 24-48 Vdc). The current is measured by using / 5 or $/ 1$ current transformers.
- Protection functions: $50 \mathrm{P}, 50 / 51$ P, $50 \mathrm{~N} / \mathrm{G}, 50 / 51 \mathrm{~N} / \mathrm{G}, 52,49 \mathrm{~T}$.
- It includes switch disconnector protection functions by means of trip blocking + 67N + 68 optionals.
- Up to 500 events can be recorded and a specific test menu is provided.
- High electromagnetic compatibility.
- Its reduced depth of 75 mm makes it easy to install.
- It is ideal for transformation and distribution centres with auxiliary power supplies and/or rechargeable batteries.
- It is fitted with two 67 N neutral directional units.
- With circuit breaker control and monitoring (circuit breaker status, number of openings, accumulated amperes, etc.)
- It has 4 configurable inputs and 4 free-potential outputs.
- There are bistable magnetic indicator which indicate the cause of the trip, maintaining their position even though the relay loses the supply (flags).
- Oscillography records are available.

Additional information to fault reports

- 3 CT measurement 1 CT sensitive neutral
1 neutral voltage

Technical specifications SIA-D

Technical parameters

Function 50P	Permission: yes/no
	Operating range: 0.10 to $30 \times \ln$ (step 0.01)
	Operating time: 0.02 to 300 s (step 0.01)
	Activation level 100%
	Deactivation level 95%
	Instantaneous deactivation
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)

Function 50 N/G	Permission: yes/no
	Operating range: 0.10 to $30 \times \ln$ (step 0.01)
	Operating time: 0.02 to 300 s (step 0.01)
	Activation level 100%
	Deactivation level 95%
	Instantaneous deactivation
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)

Function 50/51P	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step 0.01)
	Curves: IEC 60255-151
	Operating time: Inverse curve, very inverse curve, extremely inverse curve. Definite time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.05 to 1.25 (step 0.01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Definite time, activation level 100\%
	Definite time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)

Function 50/51 N/G	Permission: yes/no
	Operating range: 0.10 to $7 \times \ln$ (step 0.01)
	Curves: IEC 60255-151
	Operating time: Inverse curve, very inverse curve, extremely inverse curve. Definite time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.05 to 1.25 (step 0.01)
	Curve, activation level 110\%
	Curve, deactivation level 100\%
	Definite time, activation level 100\%
	Definite time, deactivation level 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 5 \%$ or $\pm 30 \mathrm{~ms}$ (greater of both)

Function 67N (2 units) (*)	Permission: yes/no
	Operating range lo: 0.1 to $30 \times \ln$ (step 0.01)
	Operating range Vo: 4 to 110 V (step 1 V)
	Operating time: 0.02 to 300 s (step 0.01 s)
	Directionality: yes/no
	Operating angle: 0 to $359^{\circ}\left(\operatorname{step} 1^{\circ}\right.$)
	Semicone angle: 0 to $170^{\circ}\left(\right.$ step 1°)
	Current, activation level 100\%
	Current, deactivation level 95\%
	Voltage, activation level 100\%
	Voltage, deactivation level 95\%

Function 49T	Available through configurable inputs
Communications	RS232 port: Modbus RTU
	RS485 port: Modbus RTU(*)
	$110-230 \mathrm{Vac} / 90-300 \mathrm{Vdc} \pm 20 \%$
Environment	$24-48 \mathrm{Vdc} \pm 10 \%$
	With DB9 KITCOM adapter
	Operating temperature: -10 to $+70{ }^{\circ} \mathrm{C}$
	Humidity: 95%
	Measurement $\mathrm{CT} / 5$ or $/ 1$
	Metallic box
	Panel mounting
	$1 / 2$ Rack -4 U
	IP-54 panel mounted

4 inputs configurables	$110 \mathrm{Vdc} \pm 40$ \%
4 outputs configurables	$\begin{aligned} & 250 \mathrm{Vac}-8 \mathrm{~A} \\ & 30 \mathrm{Vdc}-5 \mathrm{~A} \end{aligned}$
Trip block (*)	Blocking: Yes/no
	Blocking level: 1.5 to $20 \times \ln$ (step 0.01)
Circuit breaker monitoring	Circuit breaker status: Pickup, open, closed, error, opening time, opening fault, closing time and closing fault.
	Input 52a and/or input 52b
	Open and close command
	Alarm for maximum opening number: 1 to 10000
	Alarm for accumulated amps: 0 to 100000 (M(A))
	Maximum repeated openings: 1 to 10000
	Time of maximum repeated openings: 1 to 300 min
Frequency	$50 / 60 \mathrm{~Hz}$
Current measure	True RMS
	Sampling: 16 samples/cycle
	Accuracy $\pm 2 \%$ over band of $\pm 20 \%$ of rated current and $\pm 4 \%$ over the rest of the range.
Oscillography (*)	16 records per cycle
	The beginning of the oscillography is configurable
	2 registers: 3 cycle previous to the fault and 30 after fault
Function 68 (*) (Trip Bus)	Blocking permission for 50 P, 50/51P, 50N/G, 50/51 N/G, 67N1, 67 N2
Fault report	2

Dimensions and cutout pattern SIA-D

Example of ordering code:

SIA D	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	\mathbf{D}	\mathbf{A}

Note: Accessories, page 60-61.

Overcurrent and Earth Fault Relay for Primary and Secondary Distribution

Main characteristics

- The SIL-A is an overcurrent and earth fault protection relay for primary and secondary distribution with auxiliary power supply (110-230 Vac/ 90-300 Vdc, 24-48 Vdc or 24-110 Vdc/ 48-230 Vac). The current measurement is obtained either by standard current transformers $/ 1$ or $/ 5$, or by special Low Power Current Transformers (LPCT).
- Many protection functions: 50P(2), 50N/G (2)(1), 50/51P, 50/51N/G(1), 50BF, 46, 52, 79, 74TCS, COLD LOAD PICK-UP, 86, 49T and optionally 49, 74CT, 37, 46 BC, trip block for switch disconnector.
- Metallic box with high electromagnetic compatibility level (EMC) and wide range of operating temperature.
- Different mechanics (Adaptation A and Adaptation B) make the SIL-A relay easy to install and its light weight helps the customer to save costs in transport.
- Direct signalling/control both of the circuit breaker (52 function), both of the recloser (79 function).
- SIL-A with Adaptation B with trip bus protection function is available through configurable inputs and outputs thanks to the programmable logic.
- To allow the communication, relays have a communication port on the front of the equipment and remote communication with different options:

One rear port on the back with the following options respect to communication protocols:

- IEC60870-103 or Modbus RTU selectable by settings
- IEC 61850, DNP 3.0 or IEC 60870-5-104 (depending on model).

Two rear ports on the back for remote communication. Two communication protocols can be used simultaneously:

- MODBUS RTU.
- IEC 60870-5-103, IEC 61850, DNP 3.0 or IEC 60870-5-104 (depending on model).
- The SIL-A has configurable inputs and configurable outputs:

Adaptation A	Adaptation B
8 inputs + specific inputs for 74 TCS	6 inputs (74TCS through configurable inputs)
5 outputs	4 outputs

- SIL-A with adaptation B is fitted with the demand of current with the following characteristics:

Number of records: 168
Recording mode circular
Sampling rate (interval): configurable through communications: 1-60 min

SIL-A relays installed in Azadi Football Stadium's electrical substation.
(1) Note:

- LPCT model: neutral current is calculated so overcurrent protection functions are $50 \mathrm{~N}(2)$ and $50 / 51 \mathrm{~N}$
- Compact model: neutral current is measured so overcurrent protection functions are 50N/G(2) and 50/51 N/G
- Oscillographic records, fault reports and events saved in non-volatile RAM memory with date / time even without power supply thanks to its internal RTC (Real Time Clock).

Adaptation A	Adaptation B
500 events	200 events
20 fault reports $/ 80$ events in each	20 fault reports $/ 24$ events in each
2×50 cycles oscillographic records	5×100 cycles oscillographic records

Additional information to fault reports

Technical specifications SIL-A

Technical specifications

Technical parameters SIL-A

	Adaptation A	Adaptation B
Circuit breaker monitoring	Circuit breaker status: Pickup, open, closed, error, opening time, opening fault, closing time and closing fault.	
	Input 52a and/or input 52b	
	Open and close command	
	Alarm for maximum opening number: 1 to 10000	
	Alarm for accumulated amps: 0 to 100000 (M(A ${ }^{2}$) $)$	
	Maximum repeated openings: 1 to 10000	
	Time of maximum repeated openings: 1 to 300 min	
79	Function Permission: yes/no	
	Hold permission: yes/no	
	Number of reclosings: 1 to 5	
	Reclosing time 1, 2, 3, 4, 5: 0.02 to 300 s (step 0.01 s)	
	Hold time: 0.02 to 300 s (step 0.01 s)	
	Locking possibilities: pulse inputs, level inputs, commands.	
	Replacement time: 0.02 to 300 s (step 0.01 s)	
	Definitive opening time: 0.02 to 300 s (step 0.01 s)	
74TCS	Function permission: yes/no	
	Operating time: 0.02 to 300 s (step 0.01 s)	
	Trip continuity, in circuits A and B	
	Control voltage presence: -40%	Configurable inputs
	Specific inputs	
CLP	Function permission: Yes/no	Function permission: Yes/no
	50P_1 Multiplier range: 1 to 5	Setting table: 1 to 4 (step 1)
	50P_2 Multiplier range: 1 to 5	No load time:0.02 to 300 s (step 0.01 s)
	50N/G_1 Multiplier range: 1 to 5	Cold load time: 0.02 to 300 s (step 0.01 s)
	50N/G_2 Multiplier range: 1 to 5	CLP activation threshold: 8\% In
	50/51N/G Multiplier range: 1 to 5	CLP reset threshold: 10\% In
	50/51P Multiplier range: 1 to 5	
	CLP pass time: 1 to 18000 s (step 1 s)	
	CLP duration: 1 to 18000 s (step 1 s)	
	CLP activation threshold: 8\% In	
	CLP reset threshold: 10\% In	
PLC	OR16, OR16_LATCH, NOR16, NOR16_LATC̄H	OR4, NOR4, OR4_LATCH, NOR4_LATCH, OR̄4_PULSES, AND4_LATCH, NAND4 LATCH, AND4_PULSES̄, OR4 TIMER, NOR4_TIMER_UP, AND4_TIMER_UP, NAND4_ TIMER_UP
86	Allows to latch (lock out) the co logic (PLC: LATCH).	tact trip due to programmable
49T	Available through configurable programmable logic	hputs thanks to the
49 (*)	Function permission: yes/no	
	Operating range: 0.1 to 2.4 xln (step 0.01)	
	ζ heating: 3 to $600 \mathrm{~min}(\mathrm{step} 1 \mathrm{~min}$)	
	ζ cooling: 1 to 6ζ heating (step 1)	
	Alarm: 20 to 99% (step 1\%)	
	Trip level: 100\%	
	Deactivation level: 95\% of alarm level	
	Trip time accuracy: $\pm 5 \%$ over the theoretical value	
	Trip time curves are valid under 20 times the adjusted tap. With currents higher than 20 times the adjusted tap, trip time and thermal image value are truncated to 20 times the adjusted tap.	

	Adaptation A	Adaptation B
74CT (*)	Not available	Function permission: yes/no
		Operating time: 0.02 to 300 s (step 0.01 s)
		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0.5 \%$ (greater of both)
37 (*)	Not available	Function permission : yes/no
		Operating range: 0.10 to 30 xln (step 0.01)
		Operating time: 0.02 to 300 s (step 0.01 s)
		Activation level: 100\%
		Deactivation level: 105\%
		Instantaneous reset
		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0.5 \%$ (greater of both)
46BC (*)	Not available	Function permission : yes/no
		Current tap: 15 to 100 \%(step 1\%)
		Operating time: 0.02 to 300 s (step 0.01 s)
		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0.5 \%$ (greater of both)
Trip Block (*)	Not available	Blocking: Yes/no
		Blocking limit: 1.5 to $20 \times \mathrm{In}$ (step 0.01)
68 (*)	Not available	Available through configurable inputs and outputs thanks to programmable logic
Settings tables	3 settings tables	4 settings tables
	Activated by inputs or by general settings.	Activated by inputs or by general settings.
RTC	Capacitor charge time: 10 minutes	
	Operation with no auxiliary voltage: 72 hours	
Oscillography	16 samples/cycle	16 samples/cycle
	Fault init configurable	Fault init configurable
	2 records of 50 cycles: 3 prefault and 47 postfault cycles	5 records of 100 cycles: 3 prefault and 97 postfault cycles
	COMTRADE IEEE C37.1111991	COMTRADE IEEE C37.1111991
	4 analog channels y 80 digital channels	4 analog channels y 48 digital channels
Fault reports	20 fault reports with 80 events each one	20 fault reports with 24 events each one
Demand of current	Not available	Demand of current with the following characteristics: - Number of records: 168 - Recording mode circular - Sampling rate (interval): configurable through communications: 1-60 min - Record format: Date/Time IMAX (in interval) IMAX (actual) IA IB IC IN
Configurable inputs	Same voltage as the auxiliary power supply 8 configurable inputs	Same voltage as the auxiliary power supply 6 configurable inputs

	Adaptation A	Adaptation B
Configurable outputs	$\begin{aligned} & 250 \mathrm{Vac}-8 \mathrm{~A} \\ & 30 \mathrm{Vdc}-5 \mathrm{~A} \end{aligned}$	
	5 configurable outputs: - Output 1 and output 2: NC + NO - Output 3, output 4 and output 5: NO	4 configurable outputs: - Output 1 and output 2: NC $+\mathrm{NO}$ - Output 3 and output 4: NO
Frequency	$50 / 60 \mathrm{~Hz}$ (*)	$50 / 60 \mathrm{~Hz}$ selectable by general settings
Current measurement	Phase current (IA, IB, IC), neutral (IN), positive sequence (I1), negative sequence(I2) and maximum current (Imax)	
	Real RMS	
	Sampling: 16 samples/cycle	
	$\pm 2 \%$ Accuracy over a band of $\pm 20 \%$ over the nominal current and 4% over the rest of the range	
	Saturation limit: 30 times rated current	
Communications	LOCAL COMMUNICATION 1 Local port RS232: ModBus RTU	
	REMOTE COMMUNICATION (*) 2 remote ports with the following options: - 2 Remote ports RS485: ModBus RTU and IEC 60870-5-103 - 1 Remote port RS485 ModBus RTU and 1RJ45 port: IEC 61850, DNP3.0 or IEC 60870-104	REMOTE COMMUNICATION (*) 1 remote port with the following options : - 1 Remote port RS485: ModBus RTU or IEC 60870-5-103 (by general settings) - 1 RJ45 port: IEC 61850, DNP3.0 or IEC 60870-104
Auxiliary power (*)	$\begin{aligned} & 90 \mathrm{Vdc}-300 \mathrm{Vdc} / 110 \mathrm{Vac}- \\ & 230 \mathrm{Vac} \pm 20 \% \end{aligned}$	24-110 Vdc / 48-230 Vac $\pm 20 \%$
	24-48 Vdc $\pm 10 \%$	
Environmental conditions	Operating temperature : -10 to $70^{\circ} \mathrm{C}$	
	Storage temperature: -20 to $80^{\circ} \mathrm{C}$	
	Relative humidity: 95\%	
Transformers	Measurement 3 or 4CT/5 or /1	
	Measurement 3 LPCT (current transformers with voltage output)	
Mechanical Characteristics	Metallic box	
	Panel mounted.	
	1/2Rack - 4 U	1/4Rack-4 U
	IP-54 on pannel	

(1) Note:

- LPCT model: neutral current is calculated so overcurrent protection functions are $50 \mathrm{~N}(2)$ and $50 / 51 \mathrm{~N}$
- Compact model: neutral current is measured so overcurrent protection functions are $50 \mathrm{~N} / \mathrm{G}(2)$ and $50 / 51 \mathrm{~N} / \mathrm{G}$
(*) Optional depending on model

Technical specifications
Connections diagram SIL-A

SIL-A LPCT

Line

Dimensions and cutout pattern SIL-A
Adaptation A

Adaptation B

Selection \& Ordering data

SIL-A

*not available in LPCT model

Example of ordering code:

(1) Note:

- LPCT model: neutral current is calculated so overcurrent protection functions are $50 \mathrm{~N}(2)$ and $50 / 51 \mathrm{~N}$
- Compact model: neutral current is measured so overcurrent protection functions are 50N/G(2) and 50/51 N/G

Main characteristics

- The SIL-B is a relay for primary distribution which is able to protect a feeder by means of current and voltage functions.
It is normally used with a circuit breaker as cutting element.
- SIL-B is used with auxiliary power supply (110-230 Vac/ 90-300 Vdc and optionally 24-48 Vdc).
- Protection functions available in SIL-B are the following:

50P (2), 50N/G (2), 67P (2), 67N (2), 46, 59P (2), 59N (2), 27P (2), 32/40 (4), 79, 50BF, 52, 49, 86 Cold Load Pick-up, 49T, 74TCS.

Optionally: 81 U/O, 25, 37 and IRIG-B.

- 79 protection function (Recloser) allows up to 5 attempts of reclosing which can be programmed by the user.
- SIL-B has metallic box with high electromagnetic compatibility level (EMC) and wide range of operating temperature.
- Its reduced size makes the SIL-B relay easy to install and its light weight helps the customer to save costs in transport.
- Direct signalling/control both of the circuit breaker (52 function), both of the recloser (79 function).
- To allow the communication relays have a communication port on the front of the equipment
- Two rear ports on the back for remote communication. Two communication protocols can be used simultaneously:
-MODBUS RTU
- IEC 60870-5-103, IEC 61850, DNP 3.0 or IEC 60870-5-104
- SIL-B can show different measurements like:
- Phase r.m.s. currents, neutral r.m.s. current, positive / negative sequence currents
- Phase r.m.s. voltages, residual neutral voltage r.m.s, voltage between phases and Busbar phase voltage
- Angle current of each phase respect to phase A voltage
- Cos Phi (power factor and each phase power factor)
- Active power, reactive and apparent power (Total power and each phase power)
- Line frequency and Busbar frequency
- Phase difference between phase B line voltage and busbar voltage
- The SIL-B has 8 configurable inputs and 7 configurable outputs.
- 2 oscillographic records, 20 fault reports and non-volatile RAM memory: stores 1.000 events with date/time event without power supply thanks to its internal RTC (Real Time Clock).

Additional information to fault reports

Technical specifications SIL-B
Functions diagram SIL-B

67P(1) $67 P \rightarrow 50 / 51 P$

* available trough configuration
(27) $67 \mathrm{~N} \rightarrow 50 / 51 \mathrm{~N} / \mathrm{G}$

Technical specifications

Technical parameters SIL-B

Function 50P(2)	Function permission : yes/no		Function permission : yes/no
	Operating range: 0.10 to 30 xln (step 0.01)		Tap: 0.10 a 2.40 Inominal (step 0.01)
	Operating time: 0.02 to 300.00 s (step 0.01 s)		heating: 3 a 600 minutos (step 1 min)
	Activation level: 100\%		cooling: 1 a 6 veces heating (step 1)
	Deactivation level: 95\%		Alarm level: 20 a 99\% (step 1\%)
	Instantaneous deactivation	Function 49	Trip level: 100\%
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$		Deactivation level: 95\% of alarm level
Function 50N/G(2)	Function permission : yes/no		Timing accuracy: $\pm 5 \%$ respect of theorical value.
	Operating range: 0.10 to 30 xln (step 0.01)		Trip time curves are valid under 20 times the adjusted tap.
	Operating time: 0.02 to 300.00 s (step 0.01 s)		With currents higher than 20 times the adjusted tap, trip
	Activation level: 100\%		the adjusted tap.
	Deactivation level: 95\%	Function 49T	Available through configurable inputs
	Instantaneous deactivation	Function 37(2) (*)	Function permission : yes/no
	Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$		Operating range: 0.10 to $30 \times \ln$ (step 0.01)
$\begin{array}{\|l} \text { Function } \\ \text { 67P(2) } \end{array}$	Function permission : yes/no		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)
	Operating range I: 0.10 to $7 \times \ln$ (step 0.01)		Activation level: 100%
	Operating range V: 4 to 170 V (step 1 V)		Deactivation level: 105\%
	IEC 60255-151 and ANSI curves		Instantaneous reset
	Operating time: Inverse curve, very inverse curve, extremely inverse curve.		Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$
	Defined time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$	Function 59P(2)	Function permission : yes/no
	Dial: 0.05 to 2.20 (step 0.01)		Operating range: 4 to $170 \mathrm{~V}($ step 1 V$)$
	Directionality: yes/no		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Operating angle: 0 to $359^{\circ}\left(\right.$ step 1°)		Reset time: 0.2 to 1200.0 s (step 0.1 s)
	Half cone angle: 0 to $170^{\circ}\left(\right.$ step 1°)		Activation level: 100%
	Curve, current activation level: 110\%		Deactivation level: 95\%
	Curve, current deactivation level: 100\%		Temporized deactivation
	Defined time, current activation level: 100%		Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$
	Defined time, current deactivation level: 95\%		Function permission : yes/no
	Voltage activation level: 100\%		Operating range: 4 to $170 \mathrm{~V}($ step 1 V)
	Voltage deactivation level: 95\%		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Instantaneous deactivation		Reset time: 0.2 to 1200.0 s (step 0.1 s)
	Timing accuracy: 5% or 30 ms (whichever is higher)	Function 59N(2)	Activation level: 100%
Function67N(2)	Function permission : yes/no		Deactivation level: 95\%
	Operating range I: 0.10 to 7 xln (step 0.01)		Temporized deactivation
	Operating range V: 4 to 170 V (step 1 V)		Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$
	IEC 60255-151 and ANSI curves		Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$
	Operating time: Inverse curve, very inverse curve, extremely	Function 27P(2)	Function permission : yes/no
	inverse curve.		Operating range: 4 to $170 \mathrm{~V}($ step 1 V$)$
	Defined time: 0.02 to 300 s (step 0.01 s)		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.05 to 2.20 (step 0.01)		Reset time: 0.2 to 1200.0 s (step 0.1 s)
	Directionality: yes/no		Activation level: 100%
	Operating angle: 0 to $359^{\circ}\left(\right.$ (step 1°)		Deactivation level: 105\%
	Half cone angle: 0 to $170^{\circ}\left(\right.$ step 1^{1})		Temporized deactivation
	Curve, current activation level: 110%		
	Curve, current deactivation level: 100\%	Function 32(4)	Function permission : yes/no
	Defined time, current deactivation level: 95\%		Operating range: 0 to 10000 VA (step 1 VA) - secondary values
	Voltage activation level: 100\%		Operating angle: 0 to $359^{\circ}\left(\right.$ step 1°)
	Voltage deactivation level: 95\%		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)
	Instantaneous deactivation		Activation level: 100%
	Timing accuracy: 5% or 30 ms (whichever is higher)		Deactivation level: 95\%
Function 46	Function permission : yes/no		Instantaneous deactivation
	Operating range: 0.10 to 1 xln (step 0.01)	Function81(4) (*)	Function permission : yes/no
	IEC 60255-151 and ANSI curves		Type: Underfrequency or overfrecuency
	Operating time: Inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to 300 s (step 0.01 s)		Operating range: 45.00 to 65.00 Hz (step 0.01 Hz)
			Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.05 to 2.20 (step 0.01)		Reset time: 0.2 to 1200.0 s (step 0.1 s)
	Curve, current activation level: 110\%		Block function if phase b voltage is lower than 30 volts
	Curve, current deactivation level: 100\%		Activation level: 100%
	Defined time, current activation level: 100\%		
	Defined time, current deactivation level: 95\%		Overfrequency reset level: activation level -50 mHz
	Instantaneous deactivation		Temporized deactivation
	Timing accuracy: 5\% or 30 ms (whichever is higher)		Timing accuracy: $\pm 0.5 \%$ or $\pm 30 \mathrm{~ms}$

Circuit breaker monitoring	Breaker state: start, open, closed, error, opening time, opening error, closure time, closure error
	52a input and/or 52b input
	Opening and closure commands
	Maximum number of openings alarm: 1 a 10000
	Total amps alarm: 0 to $100000 \mathrm{M}\left(\mathrm{A}^{2}\right)$
	Excess repeated openings: 1 a 10000
	Repeated openings excess time: 1 to 300 min
Function 50BF	Function permission : yes/no
	Opening failure time: 0.02 to 1.00 s (step 0.01 s)
	Open breaker activation threshold: 8% In
	Open breaker reset time: 10\% In
	Function start: Device trip, opening failure input activation, breaker opening command activation
Function 79	Function permission : yes/no
	Wait permission: yes/no
	Number of reclosings: 1 to 5
	Reclosure times 1, 2, 3, 4, 5: 0.02 to 300.00 s (step 0.01 s)
	Hold time: 0.02 to 300 s (step 0.01 s)
	Locking possibilities: pulse inputs, level inputs, commands.
	Replacement time: 0.02 to 300.00 s (step 0.01 s)
	Definitive opening time: 0.02 to 300 s (step 0.01 s)
Function 25 (*)	Closure permission LLLB, LLDB, DLLB, DLDB: yes/no
	Live line/bar voltage level: 30 to 170 V (step 0.1 V)
	Dead line/bar voltage level: 4 to 170 V (step 0.1 V)
	Voltage supervisión temporisation: 0.02 to 300 s (step 0.01 s)
	Line-bar voltage difference: 4 to 170 V (step 0.1 V)
	Line-bar phase difference: 0 to 359° (step 1°)
	Line-bar frequency difference : 0.02 to 0.50 Hz (step 0.01 Hz)
	Synchro temporization: 0.02 to 300 s (step 0.01 s)
	Phase B line voltage and busbar voltage: - Modules and phases using DFT - Frequency using hardware circuit with the passing through zero detection.
	Permission signal minimum time 150 ms
74TCS	Function permission: yes/no
	Operating time: 0.02 to 300 s (step 0.01 s)
	Command voltage presence: -40\%
	Trip continuity, in circuit a and b.
CLP	Function permission : yes/no
	50P_1 multiplier range: 1 to 5
	50P_2 multiplier range: 1 to 5
	67P_1 multiplier range: 1 to 5
	67P_2 multiplier range: 1 to 5
	50N/G_1 multiplier range: 1 to 5
	50N/G_2 multiplier range: 1 to 5
	67N_1 multiplier range: 1 to 5
	67N_2 multiplier range: 1 to 5
	Time to pass to CLP: 1 to 18000 s (step 1 s)
	CLP duration time: 1 to 18000 s (step 1 s)
	CLP activation threshold: 8\% In
	CLP deactivation threshold: $10 \% \mathrm{In}$
Programmable logic control (PLC)	OR16, OR16_LATCH, NOR16, NOR16_LATCH
Function 86	Allows to latch (lock out) the contact trip due to programmable logic (PLC: OR_LATCH).
Settings tables	3 setting tables
	Selectable by input or general setting.
RTC	Condenser charge time: 10 minutes
	Functioning without auxiliary voltage: 72 hours

Oscillography	16 samples/cycle
	Oscillo starting configuration
	2 records: 10 cycles pre-fault and 128 post-fault
	COMTRADE IEEE C37.111-1991
	8 analogue channels and 120 digital channels
Fault report	20 fault reports with 80 events in each
8 configurable inputs	The voltage of the inputs is the same as the auxiliary power supply
7 configurable outputs	$\begin{aligned} & 250 \mathrm{~V} \mathrm{AC}-8 \mathrm{~A} \\ & 30 \mathrm{VDC}-5 \mathrm{~A} \end{aligned}$
	Output 1 and output 2:Commuted (NC + NO) Others: NO
Frequency	$50 / 60 \mathrm{~Hz}$
Current measurement	Phase currents (IA,IB,IC), neutral (IN), positive sequence (11) and negative sequence (I2)
	Real RMS
	Sampling: 16 samples/cycle
	$\pm 2 \%$ precision in a band covering $\pm 20 \%$ of nominal current and $\pm 4 \%$ in the rest of the range
Voltage measurement	Phase voltage (VA,VB,VC), phase-phase voltage (VAB,VBC,VCA), neutral voltage (VN), bus voltage (VBB)
	The neutral voltage is calculated internally from the phase voltages.
	Real RMS
	Sampling: 16 samples/cycle
	$\pm 2 \%$ precision in a band covering $\pm 20 \%$ of nominal current and 4% in the rest of the range
	Measure: 4 to 185 V
Angle accuracy	$\pm 2^{\circ}$
Power measurement	Total and per phase active power
	Total and per phase reactive power
	Total and per phase apparent power
	Total and per phase power factor
	2% accuracy in rated values with power factor between 1 and 0.7 (phase shift from 0 to $\pm 45^{\circ}$).
Energy measurement	Positive and negative active energy
	Positive and negative reactive energy
Frequency measurement	Starting from phase B line voltage, passing through zero detection to line frequency Starting from phase B busbar voltage, passing through zero detection to busbar frequency.
	Minimum voltage: 30V
	Accuracy: $\pm 0.01 \mathrm{~Hz}$
Communications	Local port (USB): Modbus RTU
	Remote port RS485: Modbus RTU
	Remote port RS485: IEC 60870-5-103 (*)
	Remote port RJ45: IEC 61850, DNP3.0 and IEC60870-5-104 (*)
Auxiliary power supply (*)	90 V DC - 300V DC / 110 V AC - 230 V AC $\pm 20 \%$
	24 V DC-48V DC $\pm 10 \%$
Environmental conditions	Operating temperature: -10 to $+70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $+80^{\circ} \mathrm{C}$
	Relative humidity: 95\%
Mechanical characteristics	Metal case
	Panel mounting
	1/2 Rack-4 U
	IP-54

[^2]Technical specifications
Connections diagram SIL-B

C

Example of ordering code:

SIL B	1	5	6	B	0	1	0	1	D	A

Generator Protection Relay

Main characteristics

- The SIL-G is a relay for the protection of generators which is able to protect a generator by means of current, voltage and frequency functions. It is normally used with a circuit breaker as cutting element.
- It is normally used in Cogeneration in power stations from gas, steam, hydraulic turbine, or diesel driven generators.
- SIL-G is used with auxiliary power supply (110-230 Vac/ 90-300 Vdc or 24-48 Vdc).
- Protection functions available in SIL-G are the following:

81R (4), 78 (2), 81 U/O (4), 27P, 32/4 (4), 59P (2), 59N (2), 25, 79, 50P (2), 50N/G (2), 67P (2), 67N (2), 46, 50BF, 52, 49, 86, Cold Load Pick-up, 49T, 74TCS, 37 and IRIG-B.

- 79 protection function (Recloser) allows up to 5 attempts of reclosing which can be programmed by the user.
- SIL-G has metallic box with high electromagnetic compatibility level (EMC) and wide range of operating temperature.
- Its reduced size makes the SIL-G relay easy to install and its light weight helps the customer to save costs in transport.
- Direct signalling/control both of the circuit breaker (52 function), both of the recloser (79 function).
- To allow the communication relays have a communication port on the front of the equipment
- Two rear ports on the back for remote communication. Two communication protocols can be used simultaneously:
- MODBUS RTU
- IEC 60870-5-103, IEC 61850, DNP 3.0 or IEC 60870-5-104
- SIL-G can show different measurements:
- Phase r.m.s. currents, neutral r.m.s. current, positive / negative sequence currents
-Phase r.m.s. voltages, residual neutral voltage r.m.s, voltage between phases and Busbar phase voltage
- Angle current of each phase respect to phase A voltage
- Cos Phi (power factor and each phase power factor)
- Active power, reactive and apparent power (Total power and each phase power)
- Line frequency and Busbar frequency
-Phase difference between phase B line voltage and busbar voltage
- The SIL-G has 8 configurable inputs and 7 configurable outputs apart from the specific inputs for the supervisión of trip coils (function 74TCS)
- 2 oscillographic records, 20 fault reports and non-volatile RAM memory: stores 1.000 events with date/time event without power supply thanks to its internal RTC (Real Time Clock).

Additional information to fault reports

Technical specifications SIL-G
Functions diagram SIL-G

Technical specifications

Technical parameters SIL-G

Function 81R(4)	Function permission : yes/no	Function 79	Function permission : yes/no
	Type: Increment/Decrement		
	Level: 0.1 to $5 \mathrm{~Hz} / \mathrm{s}$ (step $0.1 \mathrm{~Hz} / \mathrm{s}$)		Wait permission: yes/no
	Operating time: 0.3 to 40 s (step 0.1 s)		Number of reclosings: 1 to 5
	Block function if phase b voltage is lower than 30 volts		
	Activation level: 100\%		Reclosure times 1, 2, 3, 4, $5: 0.02$ to 300.00 s (step 0.01 s)
	Reset time: 0.2 to 120 s (step 0.1s)		Hold time: 0.02 to 300 s (step 0.01 s)
	Deactivation level: 95\%		Locking possibilities: pulse inputs, level inputs, commands.
Function 78(2)	Function permission : yes/no		Replacement time: 0.02 to 300.00 s (step 0.01 s)
	Level: 1 to 25° (step 1°)		
	Reset time: 0.2 to 120 s (step 0.1 s)		Definitive open
	Block function if phase b voltage is lower than 30 volts	Function 37(2)	Function permission : yes/no
	Activation level: 100\%		Operating range: 0.10 to 30 xln (step 0.01)
	Deactivation level: 95\%		
	Temporized deactivation		Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
Function 81(4)	Function permission : yes/no		Activation level: 100\%
	Type: Underfrequency or overfrecuency		Deactivation level. 105\%
	Operating range: 45.00 to 65.00 Hz (step 0.01 Hz)		Deactivation level: 105\%
	Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)		Instantaneous reset
	Reset time: 0.2 to 1200.0 s (step 0.1 s)		
	Block function if phase b voltage is lower than 30 volts		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)
	Activation level: 100\%	Function 50P(2)	Function permission : yes/no
	Underfrequency reset level: activation level +50 mHz Overfrequency reset level: activation level -50 mHz		Operating range: 0.10 to $30 \times \ln$ (step 0.01)
	Temporized deactivation		Operating time: 0.02 to 300.00 s (step 0.01 s)
Function 59P(2)	Function permission : yes/no		
	Operating range: 4 to 170V (step 1 V)		Activation level: 100\%
	Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)		Deactivation level: 95\%
	Reset time: 0.2 to 1200.0 s (step 0.1 s)		Instantaneous deactivation
	Activation level: 100\%		Instantaneous deactivation
	Deactivation level: 95\%		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)
	Temporized deactivation	Function 50N/G(2)	
	Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)		Function permission : yes/no
Function 59N(2)	Function permission : yes/no		Operating range: 0.10 to $30 \times \ln$ (step 0.01)
	Operating range: 4 to 170V (step 1 V)		
	Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$		Operating time: 0.02 to 300.00 s (step 0.01 s)
	Reset time: 0.2 to 1200.0 s (step 0.1 s)		Activation level: 100\%
	Activation level: 100\%		Deactivation level: 95\%
	Temporized deactivation		Instantaneous deactivation
	Timing accuracy: $\pm 30 \mathrm{~ms} \mathrm{or} \pm 0,5 \%$ (greater of both)		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)
Function 27(2)	Function permission : yes/no		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)
	Operating range: 4 to 170V (step 1 V)	Function 67P(2)	Function permission : yes/no
	Operating time: 0.02 to 300 s (step 0.01 s)		Operating range I: 0.10 to 7 xln (step 0.01)
	Activation level: 100\%		Operating range V: 4 to 170 V (step 1 V)
	Deactivation level: 105\%		IEC 60255-151 and ANSI curves
	Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)		IEC 6025s-151 and ANSI curves
Function 32(4)	Function permission : yes/no		Operating time: Inverse curve, very inverse curve, extremely
	Operating range: 0 to 10000 VA (steps 1 VA) - secondary values		inverse curve. Defined time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Operating angles: 0 to $359^{\circ}\left(\right.$ step 1°)		Dial: 0.05 to 2.20 (step 0.01)
	Operating time: 0.02 to 300.00 s (step 0.01 s)		
	Activation level: 100\%		Directionality: yes/no
	Deactivation level: 95\%		Operating angle: 0 to $359^{\circ}\left(\right.$ step 1°)
	Instantaneous deactivation		
Function 25	Closure permission LLLB, LLDB, DLLB, DLDB: yes/no		Half cone angle: 0 to $170^{\circ}\left(\right.$ step 1°)
	Live line/bar voltage level: 30 to $170 \mathrm{~V}($ step 0.1 V)		Curve, current activation level: 110\%
	Dead line/bar voltage level: 4 to 170 V (step 0.1 V)		
	Voltage supervision temporization: 0.02 to 300 s (step 0.01 s)		Curve, current deactivation level: 100\%
	Line-bar voltage difference: 4 to 170 V (step 0.1 V)		Defined time, current activation level: 100%
	Line-bar phase difference: 0 to 359° (step 1°)		Defined time, current deactivation level: 95\%
	Line-bar frequency difference : 0.02 to 0.50 Hz (step 0.01 Hz)		Defined time, current deactivation level. 95\%
	Synchro temporization: 0.02 to 300 s (step 0.01 s)		Voltage activation level: 100\%
	Phase B line voltage and busbar voltage. Modules and phases using DFT - Frequency using hardware circuit with the passing through zero detection.		Voltage deactivation level: 95\%
			Instantaneous deactivation
	Permission signal minimum time 150 ms		Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 5 \%$ (greater of both)

Function 67N(2)	Function permission : yes/no
	Operating range I: 0.10 to 7 xln (step 0.01)
	Operating range V: 4 to 170 V (step 1 V)
	IEC 60255-151 and ANSI curves
	Operating time: Inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to $300 \mathrm{~s}($ step 0.01 s$)$
	Dial: 0.05 to 2.20 (step 0.01)
	Directionality: yes/no
	Operating angle: 0 to $359^{\circ}\left(\right.$ step 1°)
	Half cone angle: 0 to $170^{\circ}\left(\right.$ step 1°)
	Curve, current activation level: 110\%
	Curve, current deactivation level: 100\%
	Defined time, current activation level: 100\%
	Defined time, current deactivation level: 95\%
	Voltage activation level: 100\%
	Voltage deactivation level: 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 30 \mathrm{~ms} \mathrm{or} \pm 5 \%$ (greater of both)
Function 46	Function permission : yes/no
	Operating range: 0.10 to 1 xln (step 0.01)
	IEC 60255-151 and ANSI curves
	Operating time: Inverse curve, very inverse curve, extremely inverse curve. Defined time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)
	Dial: 0.05 to 2.20 (step 0.01)
	Curve, current activation level: 110\%
	Curve, current deactivation level: 100\%
	Defined time, current activation level: 100%
	Defined time, current deactivation level: 95\%
	Instantaneous deactivation
	Timing accuracy: $\pm 30 \mathrm{~ms}$ or $\pm 0,5 \%$ (greater of both)
Function 49	Function permission : yes/no
	Tap: 0.10 to 2.40 Inominal (step 0.01)
	ζ heating: 3 to 600 minutes (step 1 min)
	ζ cooling: 1 to 6 times ζ heating (step 1)
	Alarm level: 20 a 99\% (step 1\%)
	Trip level: 100\%
	Deactivation level: 95\% of alarm level
	Timing accuracy: $\pm 5 \%$ respect of theorical value.
	Trip time curves are valid under 20 times the adjusted tap. With currents higher than 20 times the adjusted tap, trip time and thermal image value are truncated to 20 times the adjusted tap.
Circuit breaker monitoring	Breaker state: start, open, closed, error, opening time, opening error, closure time, closure error
	52a input and/or 52b input
	Opening and closure commands
	Maximum number of openings alarm: 1 a 10000
	Total amps alarm: 0 to 100000 (M(A2))
	Excess repeated openings: 1 to 10000
	Repeated openings excess time: 1 to 300 min
Function 50BF	Function permission : yes/no
	Opening failure time: 0.02 to $1.00 \mathrm{~s}(\mathrm{step} 0.01 \mathrm{~s}$)
	Open breaker activation threshold: 8% In
	Open breaker reset time: 10\% In
	Function start: Device trip, opening failure input activation, breaker opening command activation
Function 74TCS	Function permission: yes/no
	Operating time: 0.02 to $300 \mathrm{~s}($ step 0.01 s)
	Command voltage presence: -40\%
	Trip continuity, in circuit a and b.
Function CLP	Function permission : yes/no
	50P_1 multiplier range: 1 to 5
	50P_2 multiplier range: 1 to 5
	67P_1 multiplier range: 1 to 5
	67P_2 multiplier range: 1 to 5
	50N/G_1 multiplier range: 1 to 5
	50N/G_2 multiplier range: 1 to 5
	67N_1 multiplier range: 1 to 5
	67N_2 multiplier range: 1 to 5
	Time to pass to CLP: 1 to 18000 s (step 1 s)
	CLP duration time: 1 to 18000 s (step 1 s)
	CLP activation threshold: 8\% In
	CLP deactivation threshold: 10% In

Function 49T	Available through configurable inputs
Programmable logic control (PLC)	OR16, OR16_LATCH, NOR16, NOR16_LATCH.
Function 86	Allows to latch (lock out) the contact trip due to programmable logic (PLC: OR_LATCH).
Settings tables	3 setting tables
	Selectable by input or general setting.
RTC	Condenser charge time: 10 minutes
	Functioning without auxiliary voltage: 72 hours
Oscillography	16 samples/cycle
	Oscillo starting configuration
	2 records: 10 cycles pre-fault and 128 post-fault
	COMTRADE IEEE C37.111-1991
	8 analogue channels and 120 digital channels
Fault report	20 fault reports with 80 events in each
8 configurable inputs	The voltage of the inputs is the same as the auxiliary power supply
7 configurable outputs	$\begin{aligned} & 250 \mathrm{VAC}-8 \mathrm{~A} \\ & 30 \mathrm{VDC}-5 \mathrm{~A} \end{aligned}$
	Output 1 and output 2:Commuted ($\mathrm{NC}+\mathrm{NO}$) Others: NO
Frequency	$50 / 60 \mathrm{~Hz}$
Current measurement	Phase currents (IA,IB,IC), neutral (IN), positive sequence (I1) and negative sequence (12)
	Real RMS
	Sampling: 16 samples/cycle
	2% precision in a band covering $\pm 20 \%$ of nominal current and $\pm 4 \%$ in the rest of the range
	Saturation limit: 30 times the rated current
Voltage measurement	Phase voltage (VA, VB, VC), phase-phase voltage (VAB,VBC,VCA), neutral voltage (VN), bus voltage (VBB)
	The neutral voltage is calculated internally from the phase voltages.
	Real RMS
	Sampling: 16 samples/cycle
	2% precision in a band covering $\pm 20 \%$ of nominal current and 4% in the rest of the range
	Measure: 4 to 185 V
Angle accuracy	$\pm 2^{\circ}$
Power measurement	Total and per phase active power
	Total and per phase reactive power
	Total and per phase apparent power
	Total and per phase power factor
	2% accuracy in rated values with power factor between 1 and 0.7 (phase shift from 0 to $\pm 45^{\circ}$).
Energy measurement	Positive and negative active energy
	Positive and negative reactive energy
Frequency measurement	Starting from phase B line voltage, passing through zero detection to line frequency Starting from phase B busbar voltage, passing through zero detection to busbar frequency.
	Minimum voltage: 30 V
	Accuracy: $\pm 0.01 \mathrm{~Hz}$
Communications	Local port (USB): Modbus RTU
	Remote port RS485: Modbus RTU
	Remote port RS485: IEC 60870-5-103 (*)
	Remote port RJ45: IEC 61850, DNP3.0 and IEC60870-5-104 (*)
Auxiliary power supply (*)	90 V DC - 300V DC / 110 V AC - 230 V AC $\pm 20 \%$
	24V DC - 48 V DC $\pm 10 \%$
Environmental conditions	Operating temperature: -10 to $+70^{\circ} \mathrm{C}$
	Storage temperature: -20 to $+80^{\circ} \mathrm{C}$
	Relative humidity: 95\%
Mechanical characteristics	Metal case
	Panel mounting
	1/2 Rack-4 U
	IP-54

(*) Optional depending on the model

Technical specifications
Connections diagram SIL-G

C

Example of ordering code:

SIL G	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{6}$	\mathbf{B}	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\mathbf{D}	\mathbf{A}

Note: Accessories, page 60-61.

Accesories

Battery supply Kitcom

The KitCom is an adapter that allows you to feed SIA relays from the front communications port, allowing also to communicate with the computer locally.

SIA-C and SIA-D

The power comes from two AA batteries (IEC LRO6) of 1.5 Volts placed at the bottom of the device. The equipment has a small Dc/Dc power supply that raises the voltage till the required 12 volts to operate the equipment. This operation includes the energy necessary to trip. With DB9 connection.

SIA-F and SIA-B

The power comes from two AA batteries (IEC LR06) of 1.5 Volts placed at the bottom of the device. The equipment has a small Dc/Dc power supply that raises the voltage till the required 5 volts to operate the equipment. This operation includes the energy necessary to trip. With USB connection.

SIA-A and SIA-E

The power comes from one PP3 battery (IEC GLR061) of 9 Volts placed at the bottom of the device.

The battery supplies the voltage of 9V required to operate the equipment, including the energy necessary to trip.
With DB9 connection.
The KitCom is an adapter to supply SIA relays through the front communication port, allowing the communication with the computer simultaneously.
This adapter is very useful in the commissioning processes of the transformation centres, allowing full verification of the centre, without any auxiliary power supply.
The equipment has a microswitch that feeds the power supply with a LED (ON) when the voltage is adequate.

In addition to all the necessary to give the power supply, this device has two LED associated with the Rx and Tx lines of communication, and they are used to verify that there is data traffic between the PC and the SIA relay.

Striker PRT

This is a single effect solenoid. The striker is spring operated. The striker is activated by low-power polarised electrical signal supplied by the relay in case of a fault.
The striker is reset to its starting position manually.
Travel: 8 mm
Spring strength:

- Start of travel: 37 N
- End of travel: 18 N

Response time: 4 ms
Protection rating: IP-40

Trip coil module TCM

This item is connected to the potential-free trip contact of the relay and supplies the energy needed to trip the coil (30J).
It is loaded using the auxiliary voltage supply of the transformation centre and retains power for up to 3 days without external power supply.

Communications

The relays have a communication local port on the front of the equipment and two rear ports on the back for remote communication.

The SICom programme with Windows® ${ }^{\circledR} / 8$ uses a graphic user interface to allow you to access all equipment information, modify the settings and save events.
The programme can be used locally by using the front port or remotely by using the rear port.
There are 4 levels of access with user-definable codes.

(

PROTECTION \＆CONTROL

Index

protection \＆control

ELECTRONIC PROTECTION \＆CONTROL OF MOTORS，GENERATORS AND PUMPS

』 Introduction． 67
』 Motor Management System（Protection，Control \＆Monitoring） PBM Series． 68
』 Motor Protection Relays－GL Series 70
』 Motor Protection Relays－C \＆G Series 72
』 Pump Protection Relays－PS，P and PF Series 74
』 Panels for Submersible Pumps－CBM，CBT and CBS Series 78
』 Generator Protection Relays－GEN Series 81
』 Soft Starters and Motor Controllers－ES Series 82
』 Motor Starters－M Series． 84
■ Thermistor Sensors－PTC Series 86
』 Installation \＆Adjustment Guide 87
』 Selection Guide 93

CONTROL \＆MEASUREMENT

』 Introduction 95

』 Phase \＆Temperature Protection relays
－Phase Protection－S Series96
－Phase \＆Temperature－ST，ST－D Series． 97
－Temperature Relays LIFTS－T2 \＆TST24 Series 98
－Thermistor Relays－MT2 Series 99
』 Voltage Control Relays－U1 \＆U3 Series 100
■ Frequency Monitoring Relays－H Series． 102
■ Timers－MTR10 Series 103
』 Electrical Multimeters－EMM Series 104
』 Temperature \＆Process Control Relays－TP Series 106
』 Circular Amp Chart Recorder－FAR Series． 108
』 Multitap Current Transformer－Series CT－M Series． 109
』 Selection Guide 110

EARTH LEAKAGE PROTECTION

』 Introduction
111
』 Earth Leakage Relays WITH BUILT－IN Toroidal Transformer－ ELR－A and ELR－T Series

』 Earth Leakage Relays WITHOUT BUILT－IN transfomer－ELR－B， ELR－3C，D30，DM30 and DR30 Series

TRANSFORMERS

』 Introduction．．． 117
』 Protection \＆Measurement for Low Voltage－CT Series ．．．．．．．．．．．．． 118
घ Earth leakage Protection \＆Measurement for Low Voltage－CT－1 and CTD－1 Series
घ Electric Energy Measurement for Remote Management in Low Voltage－CT80II，CT4II，CT80II ABR and CT60II EXT Series
』 Current Measurement for Chart Recorders－CT－M Series124

』 Protection \＆Measurement for Medium Voltage－CT－SPMT Series 125
』 Current Limiting \＆Filtering－CLR Series ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 126
』 Voltage transformation for Low Voltage－PT Series ．．．．．．．．．．．．．．．．．． 126

SURGE PROTECTION

』 Introduction
127
』 Power Supply Systems \＆Installations－VP Series．．．．．．．．．．．．．．．．．．．． 128
－Type B（Class I）
－Type B＋C（Class I＋II）．．． 129
－Type C（Class II）．． 130
』 Photovoltaic Applications－VP Series．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 132
】 Wind Power Applications－VP Series．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 133
』 Protection against Transient Overvoltage－SST Series ．．．．．．．．．．．．．．．${ }^{134}$

CUSTOMIZED PRODUCTS AND BRANDLABELING

】 Customized products and Brandlabeling

ELECTRONIC PROTECTION \& CONTROL OF MOTORS, GENERATORS AND PUMPS

Introduction

Fanox designs and manufactures the most reliable protection \& control relays in the market. Products that efficiently prevent engine burnouts, saving costly repairs and preventing dreaded and unnecessary downtime in any important process.
The electric motor is one of the most important drives in industry, and plays a decisive role in the success of a production process. Valuable production processes and high value machinery can be completely paralyzed by one single motor failure. This poses the risk of great expenses, with the resulting costs significantly exceeding the cost of repairing the motor itself.
Experience shows that motor protection is still a novelty, and still not a priority amongst users. The high numbers of faults that occur every day are mainly due to overloads, locked rotor, phase failure or imbalance, heavy bursts of long duration or high duty cycle of operations, or overheating.

Over 60\% of failures are due to causes not detected by conventional protection systems, causing excessive heat in the windings, leading to a drastic reduction of the electrical life of the motor.

The most significant technical advantages of Fanox designed equipment is:

- Continuous Thermal image memory of heating and cooling cycles of the engine's starting cycles, work overload and stoppages.
- The prompt detection of phase loss, even with the engine running at low loads, stopping quickly to avoid costly breakdowns.
- Identification of trip cause. The relays indicate the reason for tripping instantly allowing you to identify and act quickly on faults.

PBM Protection, Control and Monitoring System

MOTOR MANAGEMENT SYSTEM

INTEGRAL SOLUTION FOR MCCs ADAPTABLE TO EVERY CUSTOMER NEEDS

MULTIFUNCTION

FAULT REPORTS
4 fault reports with the following information: dates, measurements, status bits, inputs and outputs.
SELF-DIAGNOSIS, INSTALLATION
MONITORING AND STATISTICS

- Earth toroidal disconnection monitoring.
- PTC sensor open circuit and short circuit detection.
- Magnetic module hardware monitoring.
- Non-volatile memory stored information coherence.
- Number of motor start ups.
- Medium and maximum current of last start up.
- Number of faults for the following functions: Overload, PTC, JAM, locked rotor and neutral faults.
- Operating hours counter.

TEST MENU
Operation check on LEDs and outputs.

DESIGNED FOR SCADA APPLICATIONS

RTU Modbus protocol and RS485 communication
MODULAR AND SCALABLE
The basic functions of the system can be extended with different modules (PBM H, PBM D...)
COMMUNICATION SOFTWARE PBCom

PBM B

PBM H

PBM Motor Management System Video demo:

PROTECTION FUNCTIONS
$\theta>$ Overload with thermal image
$-\square-$ Overheating protection (PTC sensor)

A Phase imbalance or phase failure
(\%) Phase sequence
JAM JAM detection

* Locked rotor detection
$I_{g} \gg$ Instantaneous earth leakage overcurrent
$I_{g}>$ Earth leakage inverse time overcurrent
$I_{0} \gg$ Instantaneous neutral overcurrent
$I_{0}>$ Neutral inverse time overcurrent

I< Undercurrent

PBM B

BASE MODULE

Current measurement is obtained from the motor line through the magnetic module without need of external current transformers.

From 0,8 up to 25 A with internal current transformers. Over 25 A with external current transformers.

MODELS	PBM-B1		PBM-B5	
	PBM-B11	PBM-B12	PBM-B51	PBM-B52
Adjustment range \quad Ib (A)	0,8-6A	0,8-6A	4-25A	4-25A
Auxiliary supply	110/230Vac-dc	24/48Vdc	110/230Vac-dc	24/48Vdc
Frequency	50/60/ variable (45-65) Hz			
Maximum motor nominal voltage	1.000 Vac			
CODE	17000	17002	17001	17003
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$	Pass the cables several times (n) through the holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$			
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$	Use 3 CT .../5 and the relay PBM B and pass the secondary through the holes			
OTHERS CHARACTERISTICS				
Optional	PBM-H display module HMI			
Inputs	$1 \times$ PTC temperature sensor, $1 \times$ Toroidal transformer (external earth fault), $1 \times$ Digital input 24 Vdc			
Outputs	$2 \times$ NO-NC contact			
Short circuit withstand rating	5000 A to 0,5s (SCR 5000@0,5s)			
Communication	RS485 ModBus RTU			
Signalling	5 signalling LEDs			
Reset mode	Manual, automatic and automatic time delayed			
Test	Specific test menu			
Operating temperature	$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$			

PBM H

DISPLAY MODULE HMI

This is an optional display module with an LCD screen for signalling, control and setting.
The LEDs can be configured and are identified by labels.
Access to menus is intuitive and direct, making protection system commissioning easier.

CODE	ACCESORIES	LANGUAGE
17004	PBM-HS display	Spanish
17005	PBM-HS display	French
17006	PBM-HS display	English
17007	PBM-HS display	Polish
17010	PBM-HS display	German
79229	CD PBM	
17008	CDCNB CABLE 0,5 M	
17009	CDCN1 CABLE 1 M	
CHARACTERISTICS PBM H		
LCD Display	20×2 alphanumeric characters	
Keyboard	9 keys	
Communication	RJ45 connector to relay	
Signalling	6 configurable signalling LEDs	
Reset mode	Manual, automatic and automatic time delayed	
Test	Specific test menu	

FUNCTION DIAGRAM PBM B

CONNECTION DIAGRAM PBM B

M
$3 \sim$

DIMENSIONS (mm)

PBM H

Motor Protection Relays

INTEGRAL MOTOR PROTECTION

- For 3-phase motors from 1 to 630 A and over. Cable feed through relay.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Immediate detection of phase loss (3 s), even at reduced load.
- Visual indication of tripping cause.

For motors (1 to 630 A and over), in applications such as surface mounted pumps, compressors, mixers, ventilators, elevators, cranes, industrial refrigeration and in general for those motors requiring complete protection where over temperature (by means of PTC sensor) and incorrect phase sequence protection is required.
Its 7 trip classes cover all types of starting or working cycles.

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of a $\varnothing 22 \mathrm{~mm}$ push button.
Suitable for motor control centres (MCC) and panel boards.

I> Overload
\& Phase imbalance or phase loss
$+\underset{+t^{-}}{+}$Overtemperature
(C) Phase sequence

MODELS		GL 16	GL 40	GL 90
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	4-16,7	15-40,5	40-91
	CV	3-10	10-25	30-60
	kW	2,2-7,5	7,5-18,5	22-45
according to the relay voltage supply (+15\% -10\%) ac: $50 / 60 \mathrm{~Hz}$	230 Vac single phase	11303	11323	11343
	115 Vac single phase	11302	11322	11342
	24 Vac , dc single phase	11300	11320	11340
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$		Pass the cables several times (n) through the holes in the relay $I_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$		
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$		Use 3 CT .../5 and the relay GL16 and pass the secondary through the holes		
External display module (optional)		ODGL		
CHARACTERISTICS				
Thermal memory / Overload trip		Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$		
Maximum motor nominal voltage		1000 Vac		
Trip classes (IEC 947-4-1)		5-10-15-20-25-30-35		
Phase sequence protection		ON \square OFF Actuates during the motor start		
Phase imbalance protection		Over 40\%. Tripping time < 3s		
PTC Min/max cold resist.-Average trip / reset resist.		25 / / 1500 - 3600 / 1800		
Reset mode		Manual and remote		
Signalling LED's				
Output contacts		1 relay with $1 \mathrm{NA}+1 \mathrm{NC}$		
Switching power		$\boldsymbol{I}_{\mathrm{th}}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A		
Terminals: Max. section / screw torque		2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN		
Power consumption		2,5 VA (115-230 Vac) - 1,5 W (24 Vdc)		
Protection degree / weight / mounting		IP20 / 0,5 kg / DIN rail		
Storage temperature		$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$		
Operating temperature / max. altitude		$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$		
Standards		IEC 255, IEC 947, IEC 801, EN 50081-2		
			$c \mathrm{UH}_{\mathrm{L}} \text { us }$	

Settings and curves, see pages 87 to 93.

DIMENSIONS GL RELAY (mm)

DIMENSIONS ODGL MODULE (mm)

WIRING DIAGRAMS

INTEGRAL MOTOR PROTECTION

- For 3-phase motors from 60 to 200 A and over. Cable feed through relay.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Immediate detection of phase loss (3 s), even at reduced load.

- Visual indication of tripping cause.

For 3 phase motors up to 200A, in applications such as surface mounted pumps, compressors, mixers, ventilators, elevators, cranes, industrial refrigeration and in general for those motors requiring complete protection where over temperature (by means of PTC sensor) and incorrect phase sequence protection is required.
Its 7 trip classes cover all types of starting or working cycles.

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of a $\varnothing 22 \mathrm{~mm}$ push button.
Suitable for motor control centres (MCC) and panel boards.

PROTECTION FUNCTIONS

I> Overload
\& Phase imbalance or phase loss
$-\square+t^{-}$Overtemperature
(c) Phase sequence

MODELS				GL 200
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$			60-200
	CV			50-150
	kW			37-110
according to the relay voltage supply ac: $50 / 60 \mathrm{~Hz}$	15\%	230 Vac	single phase	11363
	15\%	115 Vac	single phase	11362
	20\%	24 Vac ,	single phase	11360
External display module (optional)				ODGL

CHARACTERISTICS	
Thermal memory / Overload trip	Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$
Maximum motor nominal voltage	1000 Vac
Trip classes (IEC 947-4-1)	5-10-15-20-25-30-35
Phase sequence protection	ON \square OFF Actuates during the motor start
Phase imbalance protection	Over 40\%. Tripping time < 3s
PTC Min/max cold resist.-Average trip / reset resist.	25ת / 1500 $-3600 \Omega / 1800 \Omega$
Reset mode	Manual and remote
Signalling LED's	4 LED's: $\mathrm{ON}+\mathrm{I}>+\boldsymbol{\lambda}(\mathrm{r} 8$) $+-7-$
Output contacts	1 relay with $1 \mathrm{NA}+1 \mathrm{NC}$
Switching power	$\boldsymbol{I}_{\mathrm{th}}$: 5 A ; AC15-250V-2A; DC13-30V-2A
Terminals: Max. section / screw torque	$4.0 \mathrm{~mm}^{2}$, No. $30-12 \mathrm{AWG} / 50 \mathrm{Ncm}$, 4.4 LB - IN
Power consumption	2,5 VA (115-230 Vac) - 1,5 W (24 Vdc)
Protection degree / weight / mounting	IP20 / $1 \mathrm{~kg} / \mathrm{DIN}$ rail
Storage temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Operating temperature / max. altitude	$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
Standards	IEC 255, IEC 947, IEC 801, EN 50081-2
	CE © ULUs LISIED

Settings and curves, see pages 87 to 93.

DIMENSIONS GL RELAY (mm)

WIRING DIAGRAMS

Motor Protection Relays

BASIC MOTOR PROTECTION

- For 3-phase motors from 1 to 630 A and over. Cable feed through relay.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Immediate detection of phase loss (3 s), even at reduced load.
- Visual indication of tripping cause.

For motors of low and medium power in several applications such as compressors, ventilators, surface mounted pumps conveyor belts, machine tools, and in general to protec motors which need dependable and accurate protection relays for every type of start.
Its 3 trip classes cover many types of starting or working cycles.

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of a Ø22 mm push button.
Suitable for motor control centres (MCC) and panel boards.

PROTECTION FUNCTIONS

I> Overload
人
Phase imbalance or phase loss

MODELS		C 9	C 21	C 45
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	3-9,3	9-21,6	20-45,2
	CV	2-5,5	7,5-12	15-30
	kW	1,5-4	5,5-9	11-22
according to the relay voltage supply$\begin{aligned} & (+15 \%-10 \%) \\ & \text { ac: } 50 / 60 \mathrm{~Hz} \end{aligned}$	230 Vac single phase	11203	11223	11243
	115 Vac single phase	11202	11222	11242
	24 Vac , dc single phase	11200	11220	11240
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$		Pass the cables several times (n) through the holes in the relay $I_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$		
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$ External display module (optional)		Use 3 CT .../5 and the relay C9 and pass the secondary twice through the holes		
		ODC		

DIMENSIONS C RELAY (mm)

DIMENSIONS ODC MODULE (mm)

[^3]| CHARACTERISTICS | |
| :---: | :---: |
| Thermal memory / Overload trip | Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$ |
| Maximum motor nominal voltage | 1000 Vac |
| Trip classes (IEC 947-4-1) | 10-20-30 |
| Phase imbalance protection | Over 40\%. Tripping time < 3s |
| Reset mode | Manual and remote |
| Signalling LED's | 3 LED's: ON + I> + ג |
| Output contacts | 1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$ |
| Switching power | $\boldsymbol{I}_{\mathrm{th}}$: 5A; AC15-250V-2A; DC13-30V-2A |
| Terminals: Max. section / screw torque | 2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN |
| Power consumption | C9: 6,5VA (230Vac) - 3VA (115Vac) / C21-C45: 2,5VA |
| Protection degree / weight / mounting | IP20 / 0,3 kg / DIN rail |
| Storage temperature | $-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$ |
| Operating temperature / max. altitude | $-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$ |
| Standards | IEC 255, IEC 947, IEC 801, EN 50081-2 |
| | CE c UL us USTEED |

EEx e Motor Protection Relays

MOTOR PROTECTION IN EXPLOSIVE OR
HAZARDOUS AREAS

- Certificates for use as category 3 - Directive ATEX 94/9/EC.
- For 3-phase motors up to 1000 Vac.
- Currents from 1,5 to 630 A and over.
- With thermal memory.
- Visual indication of tripping cause.

These relays are applicable for EEx e motors with ratings up to 630A and above, operating in potentially explosive or hazardous areas such as petrochemical industries, plastic factories, etc. The relay is installed outside the explosive area.

G

PROTECTION FUNCTIONS

I> Overload
\& Phase imbalance or phase loss
$+\underset{+t^{\circ}}{+}$ Overtemperature

The models G and BG are ATEX marked with certification for Category 3 use.

PTB approval:

G and BG relays have been approved by the Physikalisch-Technische BundesanstaltPTB for the protection of EEx e explosion proof motors (DIN EN 50019 / DIN VDE 0170 /DIN VDE 0171 part 6) according to the stipulations and requirements of PTB. PTB report no. PTB Ex 3.43-30004/00

MODELS		G 17
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	5-17,7
	CV	3-10
	kW	2,2-7,5
according to the relay voltage supply$\begin{aligned} & \text { (+15\%-10\%) } \\ & \text { ac: } 50 / 60 \mathrm{~Hz} \end{aligned}$	230 Vac single phase	10723
	115 Vac single phase	10722
	24 Vdc , ac	10720
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$		Pass the cables several times (n) through the holes in the relay $I_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$		Use 3 CT's .../5 and pass their secondary twice $(\mathrm{n}=2)$ through the relay holes
External display module / Code no.		No
CHARACTERISTICS		
Thermal memory / Overload trip		Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$
Maximum motor nominal voltage		1000 V
15 adjustable tripping curves		Cold tripping times at $6 \times \boldsymbol{I}_{\mathrm{B}}$ from 2 to 30 s
Phase imbalance protection		Over 40\%. Tripping time < 3s
PTC min/max cold resist. / Average trip resistance		$100 \Omega / 1500 \Omega-2750 \Omega$
Reset mode		Manual and remote
Signalling LED's		4 LED's: ON + one for each protection
Alimentación auxiliar monofásica - Voltage Us - Frequency - Consumption - Protection fuse		$\begin{aligned} & 115-230 \mathrm{Vac}(+15 \%-6 \%) / 24 \mathrm{Vdc}(\pm 10 \%) \\ & 50 / 60 \mathrm{~Hz} \text { (from } 49 \text { to } 61,2 \mathrm{~Hz}) \\ & 2,5 \mathrm{VA}(115-230 \mathrm{Vac}) / 1,5 \mathrm{~W}(24 \mathrm{Vdc}) \\ & \text { GL } 6 \text { A } \end{aligned}$
Output contacts - Switching capacity in abnormal conditions - Short-circuit resistance		$\begin{aligned} & 1 \text { relay with } 1 \mathrm{NO}+1 \mathrm{NC} \\ & \mathrm{I}_{4 n}: 5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A} \\ & 1000 \mathrm{~A} \end{aligned}$
Short circuit withstand rating		5000 A at 0,5 s (SCR 5000@0,5 s)
Terminals max. section / Screw torque		2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
Protection degree / weight / mounting		IP20 / 0,5 kg / DIN rail
Storage temperature		$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Operating temperature		$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
Standards		EN 50081-2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 60529, EN 60947-5-1, UL 508 EN 60947-1, EN 60947-4-1, EN 60255-8, EN 954-1, EN 60079-14, EN 60034-1, EN 50019

WIRING DIAGRAM

Settings and curves, see pages 87 to 93 .

SINGLE PHASE Pump Protection Relay without Level Sensors

SINGLE PHASE PUMP PROTECTION

Underload protection by undercurrent

- Eliminates need for level sensors to detect dry running.
- For 1-phase motors from 3 to 16 A.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Visual indication of trip cause.
- Adjustable reset time for $I<$.

Suitable for 1-phase submersible pumps. By monitoring undercurrent it avoids problems caused by dry running, cavitation, etc.
The great advantage of the PS relay is that, without requiring any external detectors like level electrodes, it monitors the load of the motor and stops it before an expensive breakdown occurs.

PROTECTION FUNCTIONS

I> Overload
I< Undercurrent
U> Overvoltage

WITHOUT LEVEL SENSORS

WTHVELSENSORS ENSORS

MODELS				PS 11-R	PS 16-R
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$		$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$		3-11	3-16
		CV		0,5-2	0,5-3
		kW		0,37-1,5	0,37-2,2
$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	according to the relay voltage supply$\begin{aligned} & \text { (+15\%-10\%) } \\ & \text { ac: } 50 / 60 \mathrm{~Hz} \end{aligned}$	230 Vac	single phase	12164	12163
		115 Vac	single phase	12171	12172

CHARACTERISTICS	
Thermal memory / Overload trip	Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$
Maximum motor nominal voltage	230 Vac
Trip classes (IEC 947-4-1)	10
Undercurrent protection adjustable / Trip delay	From 0,4 to 0,9 $\times \boldsymbol{I}_{\mathrm{B}} / 5 \mathrm{~s}$
Overvoltage protection	From nominal V + 15\%
Reset mode for protection against dry running	\boldsymbol{I} < automatic (adjustable) and remote. More info in page 92
Reset mode for other protection functions	$\boldsymbol{I} \boldsymbol{>}$ automatic and remote, $\boldsymbol{U}>$ automatic. More info in page 92
Signalling LED's	3 LED's: ON + I> I< + U $>$
Output contacts	1 relay with 1 NO
Switching power	It_{n} : 5A; AC15-250V-2A; DC13-30V-2A
Terminals: Max. section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
Power consumption	PS11-R: $7 \mathrm{VA}(230 \mathrm{Vac})-4 \mathrm{VA}(115 \mathrm{Vac})$ PS16-R: $3 \mathrm{VA}(115-230 \mathrm{Vac})$
Protection degree / weight / mounting	IP20 / 0,15 kg / DIN rail
Storage temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Operating temperature / max. altitude	$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
Standards	IEC 255, IEC 947, IEC 801, EN 50081-2
	CE

[^4]
DIMENSIONS PS RELAY (mm)

PS 11-R

PS 16-R

WIRING DIAGRAM

THREE PHASE Pump Protection Relay without Level Sensors

THREE PHASE PUMP PROTECTION

Underload protection by undercurrent

- Eliminates need for level sensors to detect dry running.
- For 3-phase motors from 1 to 630 A and over. Cable feed through.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Visual indication of tripping cause.
- Manual, remote and automatic reset.

Suitable where the undercurrent (running without load) is critical, such us submersible pumps, surface pumps, etc. In these cases, when the equipment runs without load (dry well) the relay trips by undercurrent.
The great advantage of the P relay is that, without requiring any external detectors such as level electrodes, it monitors the load of the motor and stops it before an expensive breakdown occurs.

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of a Ø 22 mm push button.
Suitable for motor control centres (MCC) and panel boards.

P
PROTECTION FUNCTIONS

I> Overload
I< Undercurrent
A Phase imbalance or phase loss
(cy) Phase sequence

WITHOUT LEVEL SENSORS
NTMHOUTLNSERSENSORS

MODELS		P 19	P 44	P 90
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	7-19,6	19-44,2	40-90,4
	CV	4-10	12,5-27,5	27,5-55
	kW	3-7,5	9,2-20	20-40
according to the relay voltage supply$\begin{aligned} & \text { (+15\% -10\%) } \\ & \text { ac: } 50 / 60 \mathrm{~Hz} \end{aligned}$	230 Vac single phase	11403	11423	11443
	115 Vac single phase	11402	11422	11442
	24 Vac , dc single phase	11400	11420	11440
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$		Pass the cables several times (n) through the holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$		
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$		Use 3 CT .../5 and the relay P 19		
External display module (optional)		ODP		

CHARACTERISTICS	
Thermal memory / Overload trip	Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$
Maximum motor nominal voltage	1000 Vac
Trip classes (IEC 947-4-1)	5-10-15
Phase sequence protection	Yes
Phase imbalance protection	Over 40\%. Tripping time < 3s
Undercurrent protection adjustable / Trip delay	From 0,5 to 0,9 $\times \boldsymbol{I}_{\mathrm{B}}$. Operative from 0,3 $\times \boldsymbol{I}_{\mathrm{B}} / 3 \mathrm{~s}$
Reset mode for protection against dry running	\boldsymbol{I} < manual, remote and automatic. More info in page 92
Reset mode for other protection functions	Manual, remote and automatic (every 15 minutes)
Short circuit withstand rating	5000 A at 0,5 s (SCR 5000@0,5 s)
Signalling LED's	4 LED's: ON + I> + I $\mathbf{+}+\boldsymbol{\lambda}$ ($\mathbf{(8 \%}$)
Output contacts	1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
Switching power	I_{4} : 5 A ; AC15-250V-2A; DC13-30V-2A
Terminals: Max. section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
Power consumption	2,5 VA
Protection degree / weight / mounting	IP20 / 0,5 kg / DIN rail
Storage temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Operating temperature / max. altitude	$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
Standards	IEC 255, IEC 947, IEC 801, EN 50081-2
	CE © UL us Lsisto

DIMENSIONS ODP MODULE (mm)

Settings and curves, see pages 87 to 93 .

THREE PHASE Pump Protection Relay without Level Sensors

THREE PHASE PUMP PROTECTION

Underload protection by $\cos \varphi$

- Eliminates need for level sensors to detect dry running.
- For 3-phase motors from 1 to 630 A and over. Cable feed through relay itself.
- Precise motor heating and cooling memory, reproduces its thermal image.
- Visual indication of tripping cause.
- Adjustable reset time for $\cos \varphi$.

Suitable for 3-phase submersible pumps, petrol station pumps, and other type of pumps and systems where running without load is critical (dry well, broken transmission belt, etc.).
The great advantage of these relays is that, by using the motor itself as a sensor and without requiring any external detectors, they monitor the $\cos \varphi$ of the motor and stop it before a breakdown caused by dry running, cavitation or closed valve occurs.

RROTECTION FUNCTIONS

I> Overload
$\cos \varphi$ Underload
A Phase imbalance or phase loss
(c) Phase sequence

WITHOUT LEVEL SENSORS

NTTHOUT LEVEL SENSORS

MODELS			PF 16-R	PF 47-R
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$		4-16,6	16-47,5
	CV		3-10	10-30
	kW		2,2-7,5	7,5-22
Adjustment range Motor 230 V $50 / 60 \mathrm{~Hz}$	$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$		4-16,6	16-47,5
	CV		1,5-5,5	5,5-15
	kW		1,1-4	4-11
according to the relay voltage supply$\begin{aligned} & \text { (+15\%-10\%) } \\ & \text { ac: } 50 / 60 \mathrm{~Hz} \end{aligned}$	400/440 Vac	3-phase (motor)	12165	12167
	230 Vac	3-phase (motor)	12173	12168
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor below the minimum setting $\boldsymbol{I}_{\mathrm{B}}$			Pass the cables several times (n) through the holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$	
For $\boldsymbol{I}_{\mathrm{N}}$ of the motor above the maximum setting $\boldsymbol{I}_{\mathrm{B}}$			Use 3 CT .../5 and the relay PF16-R	
External display module (optional)			ODPF	
CHARACTERISTICS				
Thermal memory / Overload trip			Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$	
Maximum motor nominal voltage			440 Vac	
Trip classes (IEC 947-4-1)			10-20-30	
Phase sequence protection			Yes	
Phase imbalance protection			Over 40\%. Tripping time < 3s	
Underload protection by $\cos \varphi$ / Trip delay			$\cos \varphi$ adjustable from 0,15 to 1,0 / adjustable from 5 to 45s	
Reset mode for protection against dry running			$\cos \varphi$ automatic (adjustable) and remote. More info in page 92	
Reset mode for other protection functions			$\boldsymbol{I}>\boldsymbol{\lambda}(\mathbf{8} 8)$ Manual, remote and automatic. More info in page 92	
Signalling LED's			4 LED's: ON + I> + $\boldsymbol{\operatorname { c o s }} \varphi+\boldsymbol{\lambda}(\mathrm{P} \%$)	
Output contacts			1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$	
Switching power			$\mathrm{t}_{\text {th }}$: 5A; AC15-250V-2A; DC13-30V-2A	
Terminals: Max. section / screw torque			2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN	
Power consumption			1,5W-12 VA (230 Vac) - 20 VA (400 Vac)	
Protection degree / weight / mounting			IP20 / 0,5 kg / DIN rail	
Storage temperature			$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	
Operating temperature / max. altitude			$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$	
Standards			IEC 255, IEC 947, IEC 801, EN 50081-2	

Settings and curves, see pages 87 to 93 .

DIMENSIONS PS RELAY (mm)

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.

Easy to install. Size of a Ø 22 mm push button.
Suitable for motor control centres (MCC) and panel boards.
This optional display module is mounted externally, e.g. on the panel door or a draw-out unit in a motor control centre (MCC) and connected to the relay by a flat cable (length 2 meters).
The module has the appropriate LED's to signal the trip cause and a reset push-button.
Weight: $0,05 \mathrm{~kg}$.
Protection degree: IP50

ODPF

Model	Code	Relay type
ODPF	$\mathbf{1 2 5 5 5}$	PF

DIMENSIONS ODPF MODULE (mm)

"The PS and PF electronic relays have been specially designed to provide complete protection for both single and three phase pumps and any other system where dry running is a critical factor."

Conventional panel
Thermal relay Level electrode relay as well as
Level electrodes Level electrode wiring

The graph shows that with FANOX SOLUTION you can save up to 35% of the cost of a pump protection system.

CBM

Panels for SUBMERSIBLE Pumps

SINGLE PHASE PUMPS

- Thermal memory of motors heating and cooling cycles.
- Automatic reset, adjustable from 2 to 240 minutes for well filling,
- Indication of trip cause.
- Control point for pressure switch, buoy, programmer...
- Includes: circuit breaker 1P+N, PS-R electronic relay, contactor, LEDs and on/off switch.

One of the most critical situations in pump operation is dry running. The solution offered by FANOX single-phase protection panels is based on measuring the undercurrent. In dry running situations a current decrease is detected. This reduction of consumed current is measured by the PS-R electronic relay fitted to the protection panel: when the preset undercurrent value is reached, it switches the pump off.

WITHOUT LEVEL SENSORS

Pump protection without level sensor video demo:

Models	Code	Approx. motor current (Amps)	Power of single-phase 230 V motor		Adjustable well filling time (minutes)	Dimensions (mm)
			HP	kW		
CBM-2	12312	3-11	0.5-2	0.37-1.5	2-70	$230 \times 250 \times 150$
CBM-3	12314	11-16	2-3	1.5-2.2	2-240	$230 \times 250 \times 150$

- Equipment with halogen-free wiring

Fanox Control Panels protect pumps against dry running without using level sensors.

- Maximum protection without level electrodes or level relays.
- Electronic relay incorporated.
- Quick and easy installation, maintenance-free.
- Installation costs are significantly reduced.
- Can be adapted to installations already in service, without removing the pump.

Panels for SUBMERSIBLE Pumps

THREE PHASE PUMPS

- Thermal memory of motors heating and cooling cycles.
- Automatic reset for well filling. Adjustable from 2 to 75 minutes.
- Trip cause indication.
- Control point for pressure switch, buoy, programmer...
- Includes: circuit breaker 3P or 3P+N, PF-R electronic relay, contactor, LEDs and on/off switch.
- Models with metal enclosure also include voltmeter, ammeter and φ meter.

The cosine of phi $(\operatorname{Cos} \varphi)$ is the value of the cosine of the phase angle between the voltage and the intensity of the electrical current. This oscillates from a value slightly below 1 for a full load operating motor to almost 0 when it is dry running. Therefore, in dry running situations, $\cos \varphi$ falls significantly. This reduction is monitored by the PF-R relay installed in FANOX three-phase protection panels, meaning that when it falls beneath the adjusted value, the panel shuts down the pump and protects it from damage.

WITHOUT LEVEL SENSORS
CBT $\cos \varphi$ Underload

	Models	Code	Approx. motor current (Amps)	Power of single-phase 230 V motor		Adjustable well filling time (minutes)	Dimensions (mm)
				HP	kW		
	CBT-1	12301	1.1-2.0	0.5-1	0.37-0.75	2-75	$230 \times 250 \times 150$
	CBT-2	12302	2.8-3.8	1.5-2	1.1-1.5	2-75	$230 \times 250 \times 150$
	CBT-5	12305	5.5-9.5	3-5.5	2.2-4	2-75	$230 \times 250 \times 150$
	CBT-7	12307	13	7.5	5.5	2-75	$230 \times 250 \times 150$
	CBT-10	12310	16.5	10	7.5	2-75	$230 \times 250 \times 150$
	CBT-15	12315	24	15	11	2-75	$230 \times 250 \times 150$
$\stackrel{\dot{1}}{\stackrel{1}{を}}$	CBT-20M	12316	32	20	15	2-75	$230 \times 250 \times 150$
	CBT-25M	12317	40	25	18.5	2-75	$230 \times 250 \times 150$
	CBT-30M	12318	47	30	22	2-75	$230 \times 250 \times 150$
	CBT-40M	12319	64	40	30	2-75	$600 \times 500 \times 200$
	CBT-50M	12320	79	50	37	2-75	$600 \times 500 \times 200$
	CBT-60M	12332	92	60	45	2-75	$600 \times 500 \times 200$

[^5]
Panels for SUBMERSIBLE Pumps

THREE PHASE PUMPS WITH SOFT STARTER

- Thermal memory of motors heating and cooling cycles.
- Automatic reset for well filling. Adjustable from 2 to 75 minutes.
- Trip cause indication.
- Control point for pressure switch, buoy, programmer...
- Metal case.
- Includes: circuit breaker 3P+N, PF-R electronic relay, ES soft starter, contactor, LEDs and on/ off switch.

FANOX protection panels with progressive startup and shut -down are fitted with ES soft starters to prevent problems caused by water hammering or sudden start-ups and shut-downs.
Protection against dry running is provided by the PF-R relay that monitors the value of $\cos \varphi$ and shuts down the pump when it falls below the selected value.

CBS
PROTECTION FUNCTIONS
$\boldsymbol{\operatorname { c o s }} \varphi$ Underload
I> Overload
A Phase imbalance or phase loss
(r) Phase sequence

I>> Short-circuit

- Soft start
- Soft stop

WITHOUT LEVEL SENSORS

	Models	Code	Approx. motor current (Amps)	Power of single-phase 230 V motor		Adjustable well filling time (minutes)	Dimensions (mm)
				HP	kW		
$\stackrel{\underset{1}{\overleftarrow{E}}}{\stackrel{\rightharpoonup}{\Sigma}}$	CBS-2*	12321	3.8	0.5-2	0.37-1.5	2-75	$400 \times 300 \times 200$
	CBS-3*	12322	5.5	3	2,2	2-75	$400 \times 300 \times 200$
	CBS-5*	12323	7.0-9.5	4-5.5	3-4	2-75	$400 \times 300 \times 200$
	CBS-7*	12324	13	7.5	5.5	2-75	$500 \times 400 \times 200$
	CBS-10	12326	16.5	10	7.5	2-75	$500 \times 400 \times 200$
	CBS-12	12327	21	12.5	9.2	2-75	$500 \times 400 \times 200$
	CBS-15	12328	24	15	11	2-75	$500 \times 400 \times 200$
	CBS-20	12329	32	20	15	2-75	$600 \times 400 \times 200$
	CBS-25	12330	40	25	18.5	2-75	$600 \times 400 \times 200$
	CBS-30	12331	47	30	22	2-75	$600 \times 500 \times 200$

- Equipment with halogen-free wiring

* Models available in plastic box.

FANOX

- protection \& control

Generator Protection Relay

GENERATOR PROTECTION

- For generators up to 1000 Vac.
- With thermal memory.
- Visual indication of trip cause.
- Fast trip curves.

This relay is specially applicable for protecting low voltage generators up to 1000 Vac, and currents up to 2000 A or higher. Precise motor heating and cooling memory, reproduces its thermal image.
It offers a suitable protection offering the choice between 15 trip curves thus avoiding the generator working over its damage curve.

EXTERNAL DISPLAY MODULE

By means of this plug-in optional accessory the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of $\varnothing 22 \mathrm{~mm}$ push button.

OTHER RELAYS FOR GENERATORS:

- H: Frequency relay (See page 102).
- U3N: Three-phase voltage relay (See page 101).

PROTECTION FUNCTIONS

I> Overload
d Phase imbalance or phase loss

MODELS	GEN 10
Adjustment range $\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	$4-10,3$
Auxiliary voltage supply $(+15 \%-10 \%)$	24 Vdc
Code	$\mathbf{1 1 3 5 0}$
For $\boldsymbol{I}_{\mathrm{N}}$ of the generator above 10,3 A	Use 3 current transformers.../5
External display module (optional)	ODGEN

CHARACTERISTICS	
Thermal memory / Overload trip	Yes / From 1,1 $\times \boldsymbol{I}_{\text {B }}$
Maximum generator nominal voltage	1000 Vac
Trip time t6 $\times 1 I_{B}$	15 adjustable curves from 0,2 to 3 s .
Phase imbalance protection	Over 20\%. Tripping time < 3s
Reset mode	Manual and remote
Signalling LED's	3 LED's: ON + one for each protection
Output contacts	1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
Switching power	$\boldsymbol{I}_{\mathrm{th}}: 5 \mathrm{~A} ; \mathrm{AC15}-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
Short circuit withstand rating	5000 A at 0,5 s (SCR 5000@0,5 s)
Terminals: Max.section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
Power consumption	1,5 W
Protection degree / weight / mounting	IP20 / 0,5 kg / DIN rail
Storage temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Operating temperature / max. altitude	$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
Standards	IEC 255, IEC 801, EN 50081-2
	CE c UL) us USTED

[^6]
Soft Starters and Motor Controller

- For three-phase induction motors of up to 22 kW / 400 V .
- Built in heat dissipater and electro-mechanical bypass relay.
- Substitutes the conventional contactors. One in direct start-up and three in star-delta start-up cycle. Offers greater life cycle.
- Lower maintenance cost.
- No pressure surge when using pumps and compressors. Reduces hammering.
- Less current and voltage drop during start up. Allows for reduced power consumption.
- Mechanical dimensioning can be optimised.
- Simplified automation.
- Assembly, setting, installation, commissioning and maintenance are made easy by the compact design.
- Reduces start and stop torque, eliminating mechanical problems.
- Additional cooling is not necessary thanks to the bypass built-in relay.
- Substitutes the conventional contactors: one for direct start-up and three for star-delta start-up $\lambda-\Delta$

ES 400-25
ES 400-45

PROTECTION FUNCTIONS

- Soft start
- Soft stop

ES 230-45 and ES 400-45 model include:
\& Phase imbalance or phase loss
$-\underset{+t^{\circ}}{ }$ Overtemperature
(c) Phase sequence

MODELS*	ES 400-3	ES 230-12	ES 400-12	ES 230-25	ES 400-25	ES 230-45	ES 400-45	
Nominal voltage 50/60 Hz	$\mathrm{V} \pm 15 \%$	400	230	400	230	400	$\mathbf{2 3 0}$	400
Maximum current A		3	12	12	25	25	45	45
Motor power	kW	1,1	3	5,5	5,5	11	11	
	CV	1,5	4	7,5	22			
Code	$\mathbf{4 1 8 0 3}$	$\mathbf{4 1 8 0 1}$	$\mathbf{4 1 8 1 2}$	$\mathbf{4 1 8 0 2}$	$\mathbf{4 1 8 2 5}$	$\mathbf{4 1 8 4 6}$	$\mathbf{4 1 8 4 5}$	

* Other voltages available upon request. (380V,480V and 600V)

OPERATION

These units represent the best protection against premature ageing of motors and mechanical items.
Sudden starts and stops, that can produce damages in the bearings and gears of the motors, are eliminated.
They prevent frequent faults and objects falling onto conveyer belts.
They reduce mechanical impact in motors, axles, gears and belts, significantly prolonging the operating life of the controlled units.
An electronic circuit with semiconductors starts the motor without using the contacts. Hence these do not withstand sparks or erosion.
When the minimal voltage of the motor is reached the semiconductors are bypassed by the relay contacts. Thanks to this technology, the ES starters have a longer operating life than conventional contactors.

They are easy to install and control. They can operate by means of an external control signal, such as a programmable automation.

POTENTIOMETER SETTING

(1) Ramp up time: RAMP UP.
(2) Ramp-down time: RAMP DOWN.
(3) Par: INITIAL TORQUE. Voltage when ramp-up begins.

Potentiometers (1) (2) and (3)

- Initially set potentiometers (1) and (2) to maximum.
- Connect the supply and set potentiometer (3) so that the motor begins to rotate as soon as the supply is applied.
- Set the ramp-up and ramp-down times to the desired value.

MODE OF OPERATION

a) Change from on line direct start to soft start:

1) Cut off the cable from the motor and insert the ES starter.
2) Connect the control input to two of the input lines. Set the potentiometers according to the settings mode.
3) Reconnect the power supply.

On connecting C1, the starter performs a soft motor start. On disconnecting C1, the motor stops, the starter resets to zero and after 0.5 seconds a new soft start up may be performed. (fig. 1 and fig. 4).
b) Soft Start / Soft Stop (fig. 2 and fig. 3)

When S1 is closed (connection diagram), the soft motor start is realised according to the potentiometers setting of initial t and \% torque.
When S1 is open the soft stop is done in accordance with the ramp down potentiometer setting.

APPLICATIONS

For three-phase motors in applications such as:

- Pumps.
- Cold compressors.
- Conveyor belts, lifting devices, etc.
- Mixers.
- Fans, extractor fans and blowers.
- Garage doors and elevators.
- Concrete mixers.
- Palletizer devices, etc.

DIMENSIONS (mm)

WIRING DIAGRAMS

ES 230-12 and 45

Soft start

Soft start / soft stop

fig. 2

ES 230-45 ES 400-45

Manual Motor Starters

MANUAL MOTOR STARTERS

- Overload and short-circuit protection.
- Overload range adjustable from 0,1 to 32A.
- Wide range of accessories.
- Suitable for small size motors in machine-tools, conveyor systems, etc.
- Modular size 45 mm . DIN rail mounting (EN 50022-35).
- Isolating and main switch function (IEC 204-1)

CHARACTERISTICS	
Rated operational voltage Ue	690 V
Rated impulse withstand voltage Vimp	6 kV
Frequency	$40 / 60 \mathrm{~Hz}$
Mechanical or electrical operations	100.000
Max. operating frequency	$30 \mathrm{~m} / \mathrm{h}$
Current heat losses (3-phases)	$5,8 \mathrm{~W}$
Opening time	7 ms
Terminal section	$2 \times 6 \mathrm{~mm}^{2}$
Screw torque	$1,2 \mathrm{Nm}$
Protection degree	IP 20
Fixed magnetic trip (A)	$12 \times \mathrm{I} \pm 20 \%$

AUXILIARY CONTACTS	
Rated operational voltage	500 V
Rated impulse withstand voltage	4 kV
Maximum current I_{m}	6 A
Rated current AC-15:230/400 V	$3,5 / 2 \mathrm{~A}$
Terminal section	$2 \times 2,5 \mathrm{~mm}^{2}$
Screw torque	1 Nm

CE: UL) Us LIstio

M

Code	Model	Range A	Motor 3F, AC3 kW - 400 $\mathbf{~}$
$\mathbf{3 5 0 1 6}$	M-0,16	$0,1-0,16$	-
$\mathbf{3 5 0 0 0}$	M-0,25	$0,16-0,25$	0,06
$\mathbf{3 5 0 0 1}$	M-0,4	$0,25-0,4$	0,09
$\mathbf{3 5 0 0 2}$	$\mathbf{M - 0 , 6 3}$	$0,4-0,63$	0,12
$\mathbf{3 5 0 0 3}$	$\mathbf{M - 1}$	$0,63-1$	0,25
$\mathbf{3 5 0 0 4}$	$\mathbf{M - 1 , 6}$	$1-1,6$	0,55
$\mathbf{3 5 0 0 5}$	$\mathbf{M - 2 , 5}$	$1,6-2,5$	0,75
$\mathbf{3 5 0 0 6}$	$\mathbf{M - 4}$	$2,5-4$	1,5
$\mathbf{3 5 0 0 7}$	$\mathbf{M - 6 , 3}$	$4-6,3$	2,2
$\mathbf{3 5 0 0 8}$	$\mathbf{M - 1 0}$	$6,3-10$	4
$\mathbf{3 5 0 0 9}$	$\mathbf{M - 1 6}$	$10-16$	7,5
$\mathbf{3 5 0 1 0}$	$\mathbf{M - 2 0}$	$16-20$	9
$\mathbf{3 5 0 1 1}$	$\mathbf{M - 2 5}$	$20-25$	12,5
$\mathbf{3 5 0 1 2}$	$\mathbf{M - 3 2}$	$25-32$	15

Cold state curve.
For warm state multiply $\mathrm{x} 0,25$

Rated short circuit breaking capacity I_{cu} (DIN VDE 0660 part 101; IEC 947-2)							Back-up fuse					
Manual motor starter models	Switching capacity I_{cu} [kA]				$\begin{aligned} & \text { With limiter } \\ & \mathrm{M}-\mathrm{SB} \end{aligned}$		Fuses gL, aM (A)					
V	230	400	500	690	230	400	230	400	500	690		
M-0,16 a M-1,6	Not required				Not required		Not required					
M - 2,5			3	2,5			25	20				
M - 4			3	2,5			35	25				
M - 6,3			3	2,5			50	35				
M - 10		6	3	2,5		50				80	50	35
M - 16	10	6	2,5	2	100	50			80	80	63	35
M-20 a M-32	10	6	2,5	2	100	50			80	80	63	50

ACCESORIES

- Current limiter M-SB (IN=32A), increases the short circuit capacity up to $50 \mathrm{kA} / 400 \mathrm{~V}$. Assembly: under the manual motor starter or remotely.
- Undervoltage trip and remote trip.
- Enclosures, auxiliary contacts, emergency push-button and indicator lights.

DESCRIPTION / MODEL / CODE

- Current limiter M-SB 03990
- Auxiliary contacts (*NO early make)

Contact	Side mounting		Inside mounting		Front mounting	
2 NA	M-HS20	03901				
NO + NC	M-HS11	03900			FHMS11	03931
NO	M-HS10	39011	M-SHS10	03906	FHMS10	03932
2 NC	M-HS02	03903				
NC	M-HS01	39031	M-SHS01	03907	FHMS01	03933
NO $^{*}+$ NC	M-VHS11	03902				

- Remote trip and undervoltage trip (Inside mounting)

V / Hz	Remote		Undervoltage	
$24 / 50-60$	M-AS-05	$\mathbf{0 3 9 2 3}$	M-UN-05	$\mathbf{0 3 9 1 3}$
$110 / 50$ $120 / 60$	M-AS-15	$\mathbf{0 3 9 2 0}$	M-UN-15	$\mathbf{0 3 9 1 0}$
$220-240 / 50$ $240 / 60$	M-AS-25	$\mathbf{0 3 9 2 1}$	M-UN-25	$\mathbf{0 3 9 1 1}$
$380-415 / 50$ $440 / 60$	M-AS-45	$\mathbf{0 3 9 2 2}$	M-UN-45	$\mathbf{0 3 9 1 2}$
$500 / 50$			M-UN-55	$\mathbf{0 3 9 1 5}$

- Enclosures

Surface mounting IP41	M-GE	$\mathbf{0 3 9 5 0}$
Flush mounting IP41	M-FP	$\mathbf{0 3 9 4 0}$
IP55 Kit (M-GE and M-FP)	M-BS	$\mathbf{0 3 9 4 8}$
IP 54 Enclosure, 5 poles CEE-17	M-GC	$\mathbf{0 4 0 5 5}$
Idem with phase inverter	M-GC1	$\mathbf{0 4 0 5 6}$

- Emergency stop-operation for M-GE and M-FP

Push-button type IP55	M-PT	$\mathbf{0 3 9 8 0}$
Self-locking type IP55	M-PV	$\mathbf{0 3 9 8 1}$
Self-locking with key IP55	M-PS	$\mathbf{3 9 8 2 2}$

- Busbar

Busbar-2	M-SBD-12	$\mathbf{0 3 9 9 1}$
Busbar-3	M-SBD-13	$\mathbf{0 3 9 9 2}$
Busbar-4	M-SBD-14	$\mathbf{0 3 9 9 3}$
Busbar-5	M-SBD-15	$\mathbf{0 3 9 9 4}$
Input terminals	M-SBDE1	$\mathbf{0 3 9 9 5}$

- Others for enclosures M-GE and M-FP

Padlocking feature (max. 3)	M-VSL	$\mathbf{0 3 9 8 8}$
N-terminal	M-N	$\mathbf{0 3 9 4 9}$
Pilot light, white, 220-240V	M-LM	39701
Pilot light, white, 380-440V	M-LM1	39702
Pilot light, green, 220-240V	M-LM-G	$\mathbf{3 9 7 1 1}$
Pilot light, green, 380-440V	M-LM1-G	39712
Pilot light, red, 220-240V	M-LM-R	39721
Pilot light, red, 380-440V	M-LM1-R	$\mathbf{3 9 7 2 2}$

DIMENSIONS (mm)

M-SB

Thermistor Sensors

PTC

THERMISTOR SENSORS PTC

- Connected to PBM B, GL, G, ST or MT relays to protect motors against overtemperature.
- PTC. Positive temperature coefficient
- PTC 120, for internal mounting. Temperature threshold $120^{\circ} \mathrm{C}$.
- PTCEX 70, for external mounting. Temperature threshold $70^{\circ} \mathrm{C}$.

Models	PTC 120	PTCEX 70
Code	$\mathbf{4 1 7 0 0}$	$\mathbf{4 1 7 0 5}$
Threshold temperature	$120^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Threshold resistance	$\geq 1330 \Omega$	$\geq 1330 \Omega$
Mounting	internal	external

DIMENSIONS PTC (mm)

$\varnothing 3$ mm

|=500 mm

PTCEX 70

PTC 120

CONNECTION WIRES

Models	Code	Length
CDCNB	$\mathbf{1 7 0 0 8}$	0.5 m
CDCN1	$\mathbf{1 7 0 0 9}$	1 m

THE MOTOR PROTECTION

The electric motor is one of the most important operating devices in industry. Many times the shutdown of an industrial process is caused by a simple motor. High-cost production runs and valuable machinery can become paralysed at great cost, even more than the cost of rewinding the motor.

Experience shows that motor protection continues to be a problem, based on the number of breakdowns occuring every day.

Over 60\% of failures are caused by overheating of the motor windings. These can be detected, and prevented, by measuring and analysing the current being absorbed by the motor, or by controlling temperature limits of the winding. The major causes are as follows:

- Overloads
- Locked rotor
- Over and undervoltage
- Phase imbalance or phase loss
- Long and heavy start-ups
- Excessive operating cycles
- Heating from non-electrical causes
- Inadequate motor ventilation
- High room temperature
- Insulation failure

The following diagram shows the dramatic decrease suffered in the electric life of a motor due to the excessive heat of the motor windings (Montsinger's rule).

As one can see, a $10^{\circ} \mathrm{C}$ increase in temperature reduces the useful life of the motor by half.

The most reliable protection options in common use are:

- Fuses or circuit breakers for short-circuit protection.
- Electronic motor protection relays with thermal memory.
- Contactors for motor control.

FANOX RELAYS

Our R+D Division has allowed FANOX to develop a wide range of easy-toinstall and operate electronic relays, at truly competitive prices, which will save downtime and money.

FANOX motor protection relays work with the current measured in real time. The current, which is read by three current transformers built into the relays, is electronically processed and used as a model of the thermal image of the motor, and is continously compared to the values set on the relay.

The three power supply cables to the motor are not directly connected to the relay, but pass through its corresponding CT holes.
This provides motor protection against:

- Overload: The relay creates a model of the thermal image of the motor during its heating and cooling cycles. In this way, in overload conditions, the relay will take into consideration previous operating conditions of the motor, and will trip quicker if the relay has detected previous occasions of overload. This thermal memory is independent of the auxiliary voltage supply of the relay and is stored even when this voltage is cut off or disconnected. The different trip curves available for selection in the relays allow for precise adjustment to any kind of motor start-up or work ing cycle.
- Phase imbalance and phase loss: even if the motor is running below its full load current.
- Incorrect phase sequence detection is highly important when the correct phase sequence is critical as in compressors, pumps, fans and other applications (GL, P, PF).
- Underload by undercurrent: protects the motor against working without load, very important in pumps (P and PS).
- Protection against no-load operation: underload protection by $\cos \varphi$ has been incorporated so that the relay differentiates precisely between very low load and no-load operations, and drops out in the latter case (PF).

In addition, when the relay is connected to thermistor sensors (PTC), it protects the motor against electrical and non-electrical overheating (GL, G).
A visual display of the cause allows maintenance personnel to identify and immediately act on the underlying causes. The use of the OD display makes this operation much easier.

FANOX relays guarantee ideal protection for motors (pumps, compressors, fans, etc).

Installation and Adjustment guide

General

For correct installation and operation of Fanox relays, it is important to consider the following:

- After being fixed to the DIN rail, the cables for the three phases should be passed through the holes in the relay.
The maximum section of 700 V insulated wires that can pass through the holes are:

C	$16 \mathrm{~mm}^{2}$
GL, P, PF, G, GEN	$35 \mathrm{~mm}^{2}$
GL $\mathbf{2 0 0}$	$70 \mathrm{~mm}^{2}$

- Assembly attached to other components: it is recommended to separate the relays of other units or items that could cause strong magnetic fields, such as power or control transformers, contactors, frequency variators or high current busbars.
- In star-delta starting, the relay or the current transformers must be installed between the fuses or circuit breaker and the contactor.
- Relays used in combination with frequency inverters:
a) Not to be used with frequency inverters:
- GL relays if the protection against phase sequence selector is in the "ON" position.
- P and PF relays.
b) The following can be used with frequency inverters:
- GL relays if the protection against phase sequence selector is in the "OFF" position.
- C and G relays.

Never connect the relay or current transformers of the auxiliary power supply to the inverter output.

- Connection between the PTC sensors and the relay (GL and G). For PTC connection lengths over 100 m or when the influence of high frequency transient voltages is expected, it is adviseable to use screened cable and connect the screen to terminal T1.

Note: every relay comes with an instruction manual providing information on its correct installation and setup. Please follow this for guidance.

2 SETUP PROCEDURE

Correct order of steps during installation:

	C	GL	G	PS	P	PF	GEN
2.1 Select the trip class / tripping time	$1^{\text {st }}$	$1^{\text {st }}$	$1{ }^{\text {st }}$		$1{ }^{\text {st }}$	$1^{\text {st }}$	$1^{\text {st }}$
2.2 Adjust the I_{B} current of the relay	$2^{\text {nd }}$	$2^{\text {nd }}$	$2^{\text {nd }}$	$1^{\text {st }}$	$2^{\text {nd }}$	$2^{\text {nd }}$	$2^{\text {nd }}$
2.3 Adjust the $\cos \varphi$ value (underload)						$3{ }^{\text {rd }}$	
2.3 Adjust the $\cos \varphi$ trip delay						$4^{\text {th }}$	
2.4 Adjust the undercurrent level $I<$ (underload)				$2^{\text {nd }}$	$3{ }^{\text {rd }}$		
2.5 Select ON /OFF incorrect phase sequence		$3{ }^{\text {rd }}$					
2.6 Reset	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$3{ }^{\text {rd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$3{ }^{\text {rd }}$

After installation and setup and before starting up the motor, make sure the motor is in a cold state. This will ensure that both the relay and motor, will operate with the same thermal memory (cold condition).
2.1 Trip class / tripping time (IEC 947-4-1). Relays C, GL, P, PF, G and GEN

The different trip classes / tripping times enable the user to select the overload protection according to the various motor applications in either short or long start-ups and for different generator uses.
The class number or the tripping time refers to the maximum approximate time in seconds allowed for the direct start of the motor from a cold condition.
To select the trip class or tripping time $\left(\mathrm{t}_{6 \times I_{B}}\right)$ use the corresponding dip switches. The recommended values are listed in the following tables.

Motor with direct start-up

Start time (s)													
	Trip classes												Trip time Model G17
	Models												
	C9	C21	C45	GL16	GL40	GL90	GL200	P19	P44	P90	PF16-R	PF47-R	
1	10	10	10	10	10	10	10	5	5	5	10	10	4
2	10	10	10	10	10	10	10	10	10	10	10	10	6
3	10	20	20	15	15	15	15	10	10	10	20	20	10
4	20	20	20	20	20	20	20	15	15	15	20	20	12
5	20	30	30	20	20	25	25	15	15	15	20	20	16
6	20	30	30	25	25	25	25				30	30	18
7	30	30	30	30	30	30	30				30	30	22
8	30	30	30	30	30	35	35				30	30	24
9	30	30	30	35	35	35	35				30	30	28
10	30	30	30	35	35	35	35				30	30	30

Motor with star-delta start

$\underset{\text { Start }}{\lambda}-\Delta$ time (s) RPM \square													
	Trip classes												Trip time Model G17
	Models												
	C9	C21	C45	GL16	GL40	GL90	GL200	P19	P44	P90	PF16-R	PF47-R	
5	10	10	10	10	10	10	10	5	5	5	10	10	4
10	10	10	10	10	10	10	10	10	10	10	10	10	6
15	20	20	20	10	15	15	15	10	10	10	10	20	8
20	20	20	30	20	20	20	20	15	15	15	20	20	10
25	30	30	30	20	20	25	25	15	15	15	20	20	14
30	30	30	30	20	25	30	30				20	30	16
35	30	30	30	20	30	35	35				20	30	18
40	30	30	30	25	30	35	35				30	30	20

Average trip curves (IEC 947-4-1)

Installation and Adjustment guide

2.2 Current setting $\boldsymbol{I}_{\mathrm{B}}$.

Relays C, GL, P, PF, G, BG and GEN

Adjust the current $\boldsymbol{I}_{\mathrm{B}}$ on the corresponding dipswitches (full load current). When setting the current take into account that the base current of the relay always remains added to the current selected with the dipswitches in "ON" position (to the right). The total addition is the set current $\boldsymbol{I}_{\mathrm{B}}$.
Overload tripping current from $1,1 \times \boldsymbol{I}_{\mathrm{B}}$

$$
\begin{aligned}
& \text { e.g.: relay GL16 } \\
& \boldsymbol{I}_{\mathrm{B}}=8+4=12 \mathrm{~A}
\end{aligned}
$$

a) For motor or generator rated currents $\left(\boldsymbol{I}_{N}\right)$ within the range of the relay, the setting $\boldsymbol{I}_{\mathrm{B}}$ must be equal to the $\boldsymbol{I}_{\mathrm{N}}$ of the motor or generator.

$$
\boldsymbol{I}_{\mathrm{B}}=\boldsymbol{I}_{\mathrm{N}}
$$

b) For motor rated currents below the range of the relay, the setting $\boldsymbol{I}_{\mathrm{B}}$ must be equal to the rated current of the motor \boldsymbol{I}_{N} multiplied by the number of times that the conductors have been passed through the relay holes.

$$
\boldsymbol{I}_{\mathrm{B}}=\boldsymbol{I}_{\mathrm{N}} \times \mathrm{n}
$$

c) For motor or generator rated currents $\left(\boldsymbol{I}_{N}\right)$ above the range of the relay, use three current transformers .../5 in combination with the C9, GL16, P19, PF16-R, G17, BG17 or GEN10 according to application.

With current transformers it is always a must to pass the conductors 2 times or more through the holes of the relay.

PS relay

This adjustment is to be made according to the nominal current of the motor $\boldsymbol{I}_{\mathrm{N}}$ indicated in its characteristics plate. The value to be set $\boldsymbol{I}_{\mathrm{B}}$ is the same as $\boldsymbol{I}_{\mathrm{N}}$. The relay trips with overloads above $1,1 \times \mathrm{IB} \boldsymbol{I}_{\mathrm{B}}$.

$$
\boldsymbol{I}_{\mathrm{B}}=\boldsymbol{I}_{\mathrm{N}}
$$

2.3 Underload by $\cos \varphi$. PF.

The $\cos \varphi$ underload trip level is set by means of a potentiometer with settings from 0,15 to 1,0.

Select this value taking into consideration the no-load motor $\cos \varphi$ and that corresponding to the estimated minimum operating load. Choose an intermediate value between these two $\cos \varphi$ levels and set it in the relay.

Select the underload trip delay from 5 to 45 seconds using the 3 corresponding dipswitches (trip delay).
For your guidance you can find two practical examples below.
a) A very oversized motor for its application. The $\cos \varphi$ of the motor is 0,15 when working without load.

b) A slightly oversized motor for its application. The $\cos \varphi$ of the motor is 0,25 when working without load.

If the above mentioned $\cos \varphi$ values are unknown, the underload trip setting can be made in the following way:

1. Set the underload trip delay to zero by moving the three dipswitches to the left (trip delay).
2. Using the potentiometer ($\cos \varphi$ setting), set the $\cos \varphi$ value to the minimum: 0,15.
3. Set the reset time to the minimum value using the potentiometer ($\cos \varphi$ reset time).
4. Start up the motor and run it with the minimum estimated load.
5. Slowly turn the $\cos \varphi$ potentiometer clockwise until the relay trips and the $\cos \varphi$ LED lights up.
6. Turn the $\cos \varphi$ potentiometer anticlockwise until the $\cos \varphi$ is set at approximately 30% less than the previous value (point 5).
7. Set the underload trip delay using the 3 corresponding dip switches. Set the reset time using the adequate potentiometer.

2.4 Undercurrent.

Single phase relay PS

The setting of the underload trip level is made using a potentiometer in wich a factor between 0,4 and 0,9 is to be chosen. By multiplying this factor by the adjusted $\boldsymbol{I}_{\mathrm{B}}$ we obtain a current value under which the relay will trip and disconnect the motor. The trip is delayed by 5 seconds.
a) If the value of the $\boldsymbol{I}_{\mathrm{B}}$ of the motor without load is known:

- To avoid unwanted trips it is recommended to adjust the value 15% above the $\boldsymbol{I}_{\mathrm{B}}$ of the motor without load.

Example:

b) If the value of the $\boldsymbol{I}_{\mathrm{B}}$ of the motor without load is unknown:

- If the pump is adequately dimensioned, the recommended value for this factor is 0,7 . Adjust the potentiometer "undercurrent" to 0,7 .
- If the pump is excessively dimensioned, and during its operation unwanted trips could occur, the underload adjusted factor should be reduced to approximately 0,6.

Three phase relay \mathbf{P}

The undercurrent trip level in P relays is set using three dipswitches. To avoid nuisance trips, set this level to approximately 10\% above the no-load motor current.

Example:

2.5 Phase sequence

Monitoring the current. GL and P relays

An incorrect phase sequence is detected by current sensing and it is only operative during the motor start-up. For correct detection the starting time must be longer than 0.2 s .

In GL relays the user can activate or desactivate this protection by means of a dipswitch. Should the right phase sequence be critical, move the dipswitch to the "ON" position. If this protection is not required, always leave it in the "OFF" position.

As this function is not compatible with the use of frequency inverters, where it is necessary to protect phase sequence in these installations, move the dipswitch to "OFF" and install the Fanox "S" model relay.

Monitoring the voltage. PF relays

An incorrect phase sequence is detected by voltage monitoring.
In the event that an incorrect phase sequence has been detected, the motor will not start-up since the relay has tripped because of previously detecting the wrong phase sequence.

Installation and Adjustment guide

2.6 Reset

Relays	manual	remote	autom.
C, GL, G, GEN	\bullet	\bullet	
P, PF	man	man	\square auto
PS		\bullet	\bullet

Manual reset:

	PS	P	PF	C	GL	G	GEN
I>	NO	<5 m	<7 m	<8 m	<8 m	<8 m	<1 m
I<	NO	2 s	-	-	-	-	-
$\cos \varphi$	-	-	NO	-	-	-	-
人	-	2 s	2 s (*)	2 s	2 s	2 s	2 s
(\%)	-	2 s	$2 \mathrm{~s}\left(^{*}\right.$)	2 s	2 s	-	-
U>	NO	-	-	-	-	-	-
$\underline{+}+t^{\circ}$	-	-	-	-	1 s (*)	1 s (*)	-

(*) After recovering normal conditions.

Remote reset:

	PS	P	PF	C	GL	G	GEN
I>	<1 m	<1 m	<3 m	<3 m	<3 m	<3 m	<1 m
I<	10 s	10 s	-	-	-	-	-
$\cos \varphi$	-	-	10 s	-	-	-	-
λ	-	10 s	10 s	20 s	20 s	10 s	10 s
(\%)	-	10 s	10 s	10 s	10 s	-	-
U>	NO	-	-	-	-	-	-
$-7+{ }_{+}^{+}$	-	-	-	-	1 s (*)	1 s (*)	-

It is necessary to disconnect the auxiliar voltage more than 3 seconds after having waited the time indicated in the table.

Automatic reset:

	PS	P	PF	C	GL	G	GEN
I>	4 m	15 m	4 m	NO	NO	NO	NO
		15 m	-	-	-	-	-
$\cos \varphi$	-	-	2-75m	-		-	
λ	-	15 m	4 m (*)	NO	NO	NO	NO
(8)	-	15 m	4 m (*)	-	NO	-	-
U>	$1 \mathrm{~s}{ }^{*}$)	-	-	-	-	-	-
- + + ${ }^{\text {c }}$	-		-	-	NO	NO	-

[^7]
OPERATING TEST. C, GL, P, PF, G and GEN

To perform the trip test for phase loss, the current which passes through the relay must be higher than 0.7 of the set current $\boldsymbol{I}_{\mathrm{B}}$. Under these conditions, push and hold the TEST button for three seconds, the relay will trip due to phase loss and the corresponding LED will light up.

4 APPLICATIONS

Industries

- OEM (Original Equipment Manufacturers)
- Chemical and petrochemical
- Quarries, gravel pits and cement factories
- Steelworks, iron and steel industry
- Automotive
- Utilities and electric generation
- Water treatment and distribution
- Mining
- Food industry, sugar industry
- Marine and shipbuilding
- Timber industry
- Elevation industry
- HVAC (Heat Ventilation Air Condition)

Installations

- Motor Control Centers (MCC)
- EEx e motors in explosive environments
- Submergible pumps, in service stations and water pumping, surface pumps, etc
- Compressors
- Fans, blowers and ventilators
- Industrial refrigeration and air conditioning
- Centrifuges
- Presses
- Cranes, elevators, escalators and lifting machinery
- Machine tool
- Conveyor belts
- Mills and mixers
- Generators and alternators.

5 NOMINAL CURRENT RATING OF ASYNCHRONOUS THREE-PHASE MOTORS

The current values listed in the following table correspond to the average ratings given by various manufacturers. In some cases, these may not coincide exactly with the ratings listed on the motor data plates.

kW			0,75	1,1	1,5	2,2	3	3,7	4	5,5	7,5	11	15	18,5	22	30	37	45	55	75	90	110
CV			1	1,5	2	3	4	5	5,5	7,5	10	15	20	25	30	40	50	60	75	100	125	150
\mathbf{I}_{N} (A) Average values	$\begin{gathered} \text { MOTOR } \\ 4 \mathrm{P} \end{gathered}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	3,5	5	6,5	9,5	11	-	15	22	28	42	54	68	80	104	130	154	192	248	312	360
		$\begin{aligned} & 400 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	2	2,5	3,5	5	6,5	-	8,5	11	15	22	29	35	42	57	69	81	100	131	162	195
		$\begin{aligned} & 440 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	1,7	2,4	3,2	4,5	6	-	8	10,5	14	20	27	33	39	52	64	76	91	120	147	178
		$\begin{gathered} 220 / 240 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$	3,2	4,4	6,2	8,5	10,5	-	14	20	26	38	50	63	74	98	122	146	180	233	290	345
		$\begin{gathered} 440 / 460 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$	1,5	2,2	3	4,3	5,5	-	7,5	10	13	19	25	31	37	49	61	73	90	116	144	173
	$\begin{aligned} & \text { MOTOR } \\ & 2 \mathrm{P} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	2,0	2,8	3,8	5,5	7	-	9,5	13	16,5	24	32	40	47	64	79	92	113	149	183	220
		$\begin{gathered} 440 / 460 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$	1,9	2,5	3,4	4,8	6	7,5	-	11	15	21	27	33	39	53	65	79	95	120	153	183

Selection guide

- Motor management system

MODELS	Adjustment range $I_{\mathrm{B}}(\mathrm{A})$	MOTOR CHARACTERISTICS 400 V		PROTECTION FUNCTIONS						
		HP	kW	I<	λ	(\%)	$\stackrel{+}{+}+$	JAM	*	$\boldsymbol{I g} / I_{o}$
PBM B1	0,8-6	0,33-3	0,25-2,2	-	-	-	-	-	-	-
PBM B5	4-25	3-15	2,2-11	-	-	-	-	-	-	-

- Protection relays

MODELS	Adjustment range $I_{B}(A)$	MOTOR CHARACTERISTICS 400V		PROTECTION FUNCTIONS						
		HP	kW	I>	I<	$\cos \varphi$	λ	(\%)	+ + +	$\boldsymbol{U}>$
C 9	3-9,3	2-5,5	1,5-4	-			-			
C 21	9-21,6	7,5-12	5,5-9	-			-			
C 45	20-45,2	15-30	11-22	-			-			
GL 16	4-16,7	3-10	2,2-7,5	-			-	ON	-	
GL 40	15-40,5	10-25	7,5-18,5	-			-	ON	-	
GL 90	40-91	30-60	22-45	-			-	ON	-	
GL 200	60-200	50-150	37-110	-			-	ON	-	
PS 11-R	3-11	0,5-2	0,37-1,5	-	-					-
PS 16-R	3-16	0,5-3	0,37-2,2	-	-					-
P 19	7-19,6	4-10	3-7,5	-	-		-	-		
P 44	19-44,2	12,5-27,5	9,2-20	-	-		-	-		
P90	40-90,4	27,5-55	20-40	-	-		-	-		
PF 16-R	4-16,6	3-10	2,2-7,5	-		-	-	-		
PF 47-R	16-47,5	10-30	7,5-22	-		-	-	-		
G 17	5-17,7	3-10	2,2-7,5	-			-		-	
GEN 10	4-10,3	-	-	-			-			

[^8]

CONTROL \& MEASUREMENT

Introduction

Fanox' range of Control and Measurement relays come with many functions:

- Phase and temperature control relays for elevators with and without machine room. These indicate cause of failure, are self-powered and have a compact size of 22.5 mm (standard industrial size) which facilitates the installation of the product assembly.
- Voltage relays with direct adjustment potentiometer, which eliminates the calculation of percentage facilitating installation and commissioning.

- Electrical multimeters that measure up to 30 parameters of the power line being able to display all the values without programming changes.
- Temperature and process controllers that enable a reliable and simple, fast and accurate performance, combining PID function with Fuzzy Logic and Autotuning.
- Timers multifunction microprocessor with built-in battery that allows programming without connecting auxiliary voltage.

PHASE Control Relays

PHASE CONTROL

- Self-powered by the voltage to be monitored.
- Visual indication of trip cause.
- DIN rail mounting.
- To protect 3-phase devices and during operation of Lifts \& Elevators.
- Suitable for air conditioning, cranes, hoists and similar installations for protection during startup.
- Sensitive to incorrect phase sequence.

S

PROTECTION FUNCTIONS

λ
Phase imbalance or phase loss
(c) Phase sequence

MODELS	S2	S4
Nominal voltage of the line to be monitored ($\pm 15 \%)$	$3 \times 230 \mathrm{~V}$	$3 \times 400 \mathrm{~V}$
Voltage supply $(\pm 15 \%)$	Self-powered (3-phase)	
Code	$\mathbf{1 2 0 3 3}$	$\mathbf{1 2 0 3 4}$

DIMENSIONS S RELAY (mm)

WIRING DIAGRAM

WORK LOGIC

PHASE and TEMPERATURE Relays

PHASE AND TEMPERATURE CONTROL

ST

PROTECTION FUNCTIONS
\& Phase imbalance or phase loss
(c) Phase sequence

Overtemperature
(4) Thermistor
short-circuit

ST-D

CHARACTERISTICS		
Nominal frequency	50/60 Hz	
Control range	Phase loss: with resistive loads it trips when a phase loss occurs. With three-phase motors it trips if the voltage regenerated by the motor is lower than 60% of the main voltage. Phase imbalance > 40\%	
PTC sensor: min/max cold resist - Trip resist	100 / 1500 - 2300Ω	
Trip time delay	<0,1 s	
Reset mode	Automatic	
Signalling LED's		
Output contacts	1 relay with 1 change over NO - NC	
Switching power	t_{th} : 5A; AC15-250V-2A; DC13-30V-2A	
Maximum terminal section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN	
Power consumption	7,5 VA (230 Vac) - $11 \mathrm{VA}(400 \mathrm{Vac})$	
Protection degree / weight	IP20 / 0,12 kg	IP20 / 0,13 kg
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$	

MODELS	ST2	ST4	ST2-D	ST4-D	
Nominal voltage of the line to be monitored ($\pm 15 \%)$	$3 \times 230 \mathrm{~V}$	$3 \times 400 \mathrm{~V}$	$3 \times 230 \mathrm{~V}$	$3 \times 400 \mathrm{~V}$	
Voltage supply ($\pm 15 \%)$	Self-powered (3-phase)				
Code	$\mathbf{1 2 0 0 1}$	$\mathbf{1 2 0 1 2}$	$\mathbf{1 2 0 0 2}$	$\mathbf{1 2 0 1 3}$	

WIRING DIAGRAM

WORK LOGIC

T2 - TST24

PHASE and TEMPERATURE Control Relays (Lifts)

- Protection relay against variations of the ambient temperature (min/max), overtemperature of the motor, phase sequence and phase imbalance or phase loss.
- DIN rail mounting.
- Visual indication of trip cause.

TEMPERATURE CONTROL

- Controls the temperature of the motor room (relay + external module OD-T2) or the temperature inside switchboards where no motor room is present. (relay + internal sensor IN-T2).
- Designed according to the EN 81-1 standard and complying with the European Union Directive for Lifts (95/16/CE).
- Two adjustable temperature thresholds.

PHASE AND TEMPERATURE (PTC) RELAY

- To Protect 3-phase devices.
- Suitable for Motors with built-in PTC sensors in applications such as elevators, cranes, hoists and similar installations.
- Sensitive to incorrect phase sequence.
- Monitoring of short circuit and ruptured wire in PTC circuit.

MODELS	T2		TST24	ODT2	INT2
Nominal voltage of the line to be monitored ($\pm 15 \%$)			$3 \times 400 \mathrm{~V}$	-	-
Voltage supply ($\pm 15 \%$)	$\begin{gathered} 230 \mathrm{Vac} \\ \text { (Aux) } \end{gathered}$	24 Vac, dc (Aux)	$24 \mathrm{Vac}, \mathrm{dc}$ (Aux)	-	-
Code	12051	12052	12090	12037	12036
CHARACTERISTICS					
Nominal frequency	50/60 Hz				
Control range	Maximum temperature from $40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Minimum temperature from $-5^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$.		Phase loss: with resistive loads relay trips when a phase loss occurs. With three-phase motors relay trips if the voltage regenerated by the motor is lower than 60% of the main voltage. Phase imbalance > 40%. Maximum temperature setting from $40^{\circ} \mathrm{C}$ a $55^{\circ} \mathrm{C}$. Minimum temperature setting from $-5^{\circ} \mathrm{C}$ a $5^{\circ} \mathrm{C}$.		
Hysteresis	$2^{\circ} \mathrm{C}$				
PTC sensor: min/max cold resist - Trip resist	-		100 / / $1500 \Omega-2300 \Omega$		
Trip time delay	-		$<0,1$ s		
Reset mode	Automatic				
Signalling LED's	2 LED's: ON + I				
Output contacts	1 relay with 1 change over NO - NC		1 relay NO-NC ($\boldsymbol{\lambda}-\underline{+t^{-}}$) -1 relay NO-NC ($\boldsymbol{\lambda}$ ($\mathbf{(\%)}$)		
Switching power					
Maximum terminal section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN				
Power consumption	7,5 VA (230 Vac) - $11 \mathrm{VA}(400 \mathrm{Vac})$				
Protection degree / weight	IP20 / 0,12 kg		IP20 / 0,13 kg		
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$				

WORK LOGIC

TST-24
$\left.\begin{aligned} & \text { Tripped } \\ & \text { or Us=0 }\end{aligned} \right\rvert\,$
Normal

WIRING DIAGRAM

FANOX

- protection \& control

TEMPERATURE Control Relay by Thermistors

TEMPERATURE CONTROL BY
THERMISTORS

- Protection of the motor against overtemperature.
- DIN rail mounting.
- Visual indication of trip cause.
- Controls the temperature by the use of thermistors (PTC sensors).
- Detects short-circuit (<25』) and rupture in the circuit of sensors
- Protects the motors against over temperature caused by excessive ambient temperature, insufficient ventilation or cooling, etc
- Applicable in transformers and other machines.

MT2
PROTECTION FUNCTIONS
$\rightarrow+$ Overtemperature
(7) Thermistor short-circuit

MODELS	MT2
Voltage supply $(\pm 15 \%)$	230 Vac (Aux. supply)
Code	$\mathbf{1 2 0 3 9}$

CHARACTERISTICS	
Nominal frequency	50/60 Hz
Control range	According to the PTC installed
PTC sensor: min/max cold resist - Trip resist	25 / / 1500 -3600Ω. Reset 1800
Trip time delay	< 0,1 s
Reset mode	Automatic (30s delay)
Signalling LED's	
Output contacts	1 relay with NO-NC
Switching power	Im: 5 A; AC15-250V-2A; DC13-30V-2A
Maximum terminal section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
Power consumption	6 VA (230 Vac)
Protection degree / weight	IP20 / 0,12 kg
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

WIRING DIAGRAM

WORK LOGIC

VOLTAGE Control Relays

SINGLE - PHASE VOLTAGE RELAY

- Self-powered by the voltage to be monitored.
- Visual indication of trip cause.
- DIN rail mounting.
- Minimum and maximum thresholds adjustable (two potentiometers).
- U1D: Adjustable trip time delay. Instantaneous reset. Protects equipment such as digital instruments or electrical equipment from voltage variations in the network.

U1 D

PROTECTION FUNCTIONS

U> Overvoltage
$\boldsymbol{U}<$ Undervoltage

MODELS	U1D-24D	U1D-115	U1D-230
Frequency	DC	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Maximum threshold V	$23-28$	$105-135$	$215-275$
Minimum threshold V	$19-25$	$90-120$	$160-230$
Code	$\mathbf{1 2 0 2 8}$	$\mathbf{1 2 0 2 6}$	$\mathbf{1 2 0 2 7}$

DIMENSIONS U1D RELAY (mm)

Type of supply to be monitored	Single phase
Auxiliary supply $\pm 10 \%$	Self-powered
Accuracy	$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U} \boldsymbol{<}+1 \%-4 \%$
Trip time delay (TD)	0,1 to $6 \mathrm{~s}(\pm 20 \%)$ for $\boldsymbol{U}>\boldsymbol{U} \boldsymbol{<}$
Reset time delay (RD)	U1D: No / U1M: fix 5 min.
Reset mode	Automatic
Hysteresis	4% of the nominal voltage
Signalling LED's	3 LED's: ON $+\boldsymbol{U}>+\boldsymbol{U} \boldsymbol{<}$
Output contacts	1 relay with 1 change-over NO - NC
Switching power	$\mathrm{I}_{\mathrm{t}}: 5 \mathrm{5A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
Terminals: Max. section / Screw torque	$2,5 \mathrm{~mm}{ }^{2}, \mathrm{No} .22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
Power consumption	$3 \mathrm{VA}(115 \mathrm{Vac})-7 \mathrm{VA}(230 \mathrm{Vac})-0,7 \mathrm{~W}(24 \mathrm{Vdc})$
Protection degree / weight	IP20 / 0,11 kg
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70{ }^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

WIRING DIAGRAM

Tripped
or $\mathrm{V}=0$

Normal

WORK LOGIC

VOLTAGE Control Relays

THREE - PHASE VOLTAGE RELAY

- Self-powered by the voltage to be monitored.
- Visual indication of trip cause.
- DIN rail mounting.
- Protects three-phase installations against voltage variations between phases, incorrect sequence of phases and phase loss.
- Adjustable minimum and maximum thresholds.
- Adjustable trip time delay.

U3S model:

- Model U3S-420 is valid for 400 and 440 nominal voltage.

U3N models:

- Two independent output relays.
- Includes protection against neutral loss.

PROTECTION FUNCTIONS

U> Overvoltage
$\boldsymbol{U}<$ Undervoltage
A Phase imbalance or phase loss
(7) Phase sequence

Model U3 N includes:

* Loss of neutral

MODELS	U3S-230	U3S-420	U3N-230	U3N-400	U3N-440
Frequency	$50 / 60 \mathrm{~Hz}$				
Maximum threshold V	$210-290$	$380-500$	$230-260$	$400-460$	$440-500$
Minimum threshold V	$185-230$	$350-430$	$200-230$	$340-400$	$380-440$
Code	$\mathbf{1 2 0 7 1}$	$\mathbf{1 2 0 7 0}$	$\mathbf{1 2 0 5 6}$	$\mathbf{1 2 0 5 5}$	$\mathbf{1 2 0 5 7}$

CHARACTERISTICS		
Type of supply to be monitored	Three phase	Three-phase with neutral
Auxiliary supply $\pm 10 \%$	Self-powered	
Accuracy	$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$	
Trip time delay (TD)	0,1 to 6s ($\pm 20 \%$) for $\boldsymbol{U}>\boldsymbol{U}<$	0,1 to 3,7s ($\pm 20 \%$) for $\boldsymbol{U}>\boldsymbol{U}<{ }^{*}{ }_{\text {N }}$
Reset mode	Automatic	
Hysteresis	4\% of the nominal voltage	
Signalling LED's		
Output contacts	U3S: 1 relay with 1 change-over NO-NC / U3N: 2 relays with 1 NO	
Switching power	Ith : 5 A ; AC15-250V-2A; DC13-30V-2A	
Terminals: Max. section / Screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN	
Power consumption	U3S: 7,5 VA (230 Vac) - $11 \mathrm{VA}(230 \mathrm{Vac}) /$ U3N: $12 \mathrm{VA}(230 \mathrm{Vac})-20 \mathrm{VA}(230 \mathrm{Vac})$	
Protection degree / weight	IP20 / 0,11 kg	IP20 / 0,35 kg
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$	

WIRING DIAGRAM

WORK LOGIC

FREQUENCY Monitoring Relays

SINGLE-PHASE FREQUENCY MONITORING RELAY

H

PROTECTION FUNCTIONS

Hz Frequency variation

MODELS	$\mathbf{1 1 5}$ Vac	$\mathbf{2 3 0}$ Vac
Frequency	$50 / 60 \mathrm{~Hz}$ selectable by a dip switch	
Maximum threshold V / Hz	$\mathrm{Hz}>$ From $+0,5$ to $+3,5 \mathrm{~Hz}$. Steps of $0,5 \mathrm{~Hz}(\pm 0,1 \%)$	
Minimum threshold V / Hz	$\mathrm{Hz}<$ From $-0,5$ to $-3,5 \mathrm{~Hz}$. Steps of $0,5 \mathrm{~Hz}(\pm 0,1 \%)$	
Code	$\mathbf{1 2 1 0 3}$	$\mathbf{1 2 1 0 2}$

CHARACTERISTICS

Type of supply to be monitored	1-phase, 3-phase and 3-phase with neutral
Auxiliary supply $\pm 10 \%$	Self powered single phase
Accuracy	$\pm 0,1 \%$
Trip time delay (TD)	Adjustable from 0,2 to $30 \mathrm{~s} \pm 5 \%$
Reset mode	Automatic
Hysteresis	$\leq 0,5 \%$ of the nominal frequency
Signalling LED's	3 LED's: ON + Hz> + Hz<
Output contacts	2 relays, 1 per limit, with 1 change over NO - NC
Switching power	$\mathrm{I}_{\mathrm{m}:}: 5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
Terminals: Max. section / Screw torque	$2,5 \mathrm{~mm}{ }^{2}, \mathrm{No} .22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
Power consumption	$3,7 \mathrm{VA}(230 \mathrm{Vac})$
Protection degree / weight	$\mathrm{IP} 20 / 0,3 \mathrm{~kg}$
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

WORK LOGIC

DIMENSIONS H RELAY (mm)

WIRING DIAGRAM

Timers

- Multifunction digital timer.

- Possibility of programming up to 9 different times. Each time can be set from 0,1 seconds to 99 hours.
- With built-in battery which allows timer to be programmed without connecting to auxiliary voltage. Complete battery discharge does not affect operation or adjustment settings.
- For control and automation systems in industry.
- Command contact with 5 programmable functions.
- 2 digit, 7 segment LED displays and pushbuttons provide programming, and during operation allow for monitoring of the time period and reviewing the programmed settings.
- 45 mm module size, 35 mm wide. DIN EN 50022-35 rail mounting.

MTR 10

\section*{| MODEL | MTR $\mathbf{1 0}$ | |
| :--- | :---: | :---: |
| Auxiliary power supply (+15-10\%) | $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}, 24 \mathrm{Vdc}$, ac | 48 Vdc |
| Code | $\mathbf{1 2 1 1 0}$ | $\mathbf{1 2 1 1 1}$ |}

CHARACTERISTICS		
Time setting range	From 0,1 seconds to 99 hours	
Accuracy	$1 \% \pm 10 \mathrm{~ms}$	
Repeat accuracy	0,5\%	
Number of different times per program	Up to 8 in cycle mode and 9 in no-cycle	
Output contacts	1 relay with 2 timed change over contacts NO-NC	
Switching power	$\mathrm{Ith}^{\text {t }}$ 5A; AC15-250V-2A; DC13-30V-2A	
Terminals: max section / screw torque	2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN	
Mechanical / electrical life	$>20 \times 10^{6}$ operations / $>10^{5}$ operations	
Consumption	$8 \mathrm{VA}(230 \mathrm{Vca})-1 \mathrm{~W}$ (24 Vdc)	2.5 VA (48 Vdc) - 1W (24 Vdc)
Protection degree / weight	IP 40 front / 0,15 kg	
Storage / operation temperature	$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$	
Standards	IEC 255	

C

FUNCTION EXAMPLE DIAGRAMS

U: power supply $\quad \mathbf{R}$: relay output
Output relay at start: $\mathbf{1 L}$ de-energized; $\mathbf{1 H}$ energized. Work mode: CO non-cycle; C1 cycle.
Command contact: cu, cr, cl, ci, co.

Delay on

1L - CO - cu

Timing on

1H-CO-cu

Delay off
With command contact 1H-CO-co

Double timing

1L-CO - cu

Double timing

Cycle work mode $1 \mathrm{H}-\mathrm{C} 1-\mathrm{cu}$

Four timings

 Cycle work mode $1 \mathrm{H}-\mathrm{C} 1-\mathrm{Cu}$

Timing with pause by command contact

 1L-CO-cl

Programmable parameters

- Initial state of output relays: energized (1H) or de-energized (1L).
- Working mode: cycle (C1) or non-cycle (C0).
- Number of different times per program: up to 8 in cycle mode and up to 9 in non-cycle mode.
- Time setting range: from 0,1 seconds to 99 hours.
- Command contact.

Command contact Can be switched on in two ways:

- By closing an external voltage free contact between M and S
- By connecting 5-35 Vac,dc between $\mathrm{M}(+)$ and $\mathrm{R}(-)$ One of the following arrangements can be programmed:
Each diagram represents the effect of the command contact for the two initial states of the output relay: de-energized (1L) and energized (1H).
cu Switched off contact
Its function is blocked
cr Reset contact
When connected the output relay is de-energized; upon disconnecting, the programmed timing starts.
cl Pause contact
A pause in the timing takes place during its operation.
ci Delay on contact When disconnected the output relay is de-energized; when connected the programmed timing starts.

co Delay off contact
When disconnected the output relay is de-energized. When connected, the relay is energized. When disconnected again, the
 programmed timing starts.

DIMENSIONS MTR 10 RELAY (mm)

Electrical Multimeters

- Measure and display more than 30 parameters of a three phase line with or without neutral. True RMS values.
- All values can be read without making program changes.
- Reduced size $96 x 96 \mathrm{~mm}$. Flush mounted in panel.
- EMM 5 and EMM 7 with ModBus communication.
- Displays with red LED's of 3 digits with 7 segments for easy reading.
- Membrane push-buttons.
- Automatic scale of units.
- With active, reactive and apparent energy counter.
- Calculates the current demand and the active, reactive and apparent power demand.
- Models with ModBus communication.
- Suitable for all electrical switchboards used in the industrial field for instruments, motors, generators, etc.
- The multimeter EMM 3 has the functions of Ampermeter, Voltmeter and Frequencymeter.
- The multimeter EMM 5 has pulses output and optional communication facility.
- The multimeter EMM 7 has the following options: X: Power supply of 20~60 Vac/dc.
Y: Power supply of 90~250 Vac/dc.
A: Analogue output.
- D: Digital input for doble tariff of energy.

F: Profibus protocol.
N : Direct neutral measure.
T: Galvanic insulation on current inputs.

- NGR2 Communication software.

Available for models with communication.

EMM 3

EMM 5

PARAMETERS

V Voltage
A Current
$\operatorname{Cos} \varphi$ Power factor (PF)
W Active power (P)
VAr Reactive power (Q)
VA Apparent power (S)
kWh Active energy counter
kVArh Reactive energy counter
kVAh Apparent energy counter

Hz Frequency
${ }^{\circ} \mathrm{C}$ Temperature
Max Maximum values
Avg Average values
MaxD Maximum average values
(2) Hour counter

- Alarm

MODELS				EMM 3	EMM 5-P / EMM 5-C	EMM 7
$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	according to the auxiliary supply of the electrical multimeter ($\pm 15 \%$) $50 / 60 \mathrm{~Hz}$	3-Phase Power Supply L2-L3	110 Vac	41250	41265/41280	41295
			230 Vac	41255	41270/41285	
			400 Vac	41260	41275/41290	

For 1-phase power supply please consult.

CHARACTERISTICS			
Supply	Self-powered	Self-powered	Self-powered
Voltage input	4 wire input for 3 phase with or without neutral (in this case don't connect N)		
- Input impedance	$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$
- Continuous overload	+ 20 \%	+ 20 \%	+ 20 \%
Current input	From 0,02 to 5 A . Use always 3 CT.../5. Multimeters self-consumption < 0,5 VA		
- CT primary $\boldsymbol{I}_{\mathrm{N}}$ current	Range between 5 and 10.000 A . This value has to be programmed by the user in the multimeter		
- Continuous overload	+ 30 \%	+ 30%	+ 30%
Communication RS485 ModBus	No	EMM 5-P: No / EMM 5-C: Yes	Yes
Digital output	No	EMM 5-P: Yes / EMM 5-C: No	Yes
Analogue output	No	No	Optional
Maximum terminal section	2,5 mm ${ }^{2}$		
Front protection degree / weight	IP52 / 0,5 kg		
Storage / operation temperature; humidity	$-25^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C} /-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C} ;<90 \%$		
Standards	IEC EN 50081-2, IEC EN 50082-1, IEC EN 61010-1		

MEASURED PARAMETERS

DIMENSIONS EMM 3 RELAY (mm)

WIRING DIAGRAM EMM 3

DIMENSIONS EMM 5 RELAY (mm)

DIMENSIONS EMM 7 RELAY (mm)

TP

Temperature and Process Controllers

- Provide simple reliable and economic control of industrial processes.
- Complete range of controllers adapted to most industrial applications.
- Quick and exact operation as result of PID action improved with FUZZY logic.
- Permit calculation of the most efficient parameters thanks to the AUTOTUNING function.
- ModBus RS485 Communication.

INDUSTRIES AND APPLICATIONS

- Chemical Industries
- Plastics treatment industries
- Paper processing industries
- Welding equipment
- Oven manufacturing
- Other types of industries and applications...

PROCESSES

- Control of temperature, pressure, flow, level, volume processes, etc...
- Industrial equipment control
- Valve positioners control
- Servo operation and speed variators control
- Process limit values control
- Other types of processes..

DIMENSIONS TP 720 RELAY (mm)

TP 731

WIRING DIAGRAM TP 731

DIMENSIONS TP 750 RELAY (mm)

WIRING DIAGRAM TP 750

SPECIFICATIONS

Power Supply
Power Consumption
Input resistance
Input compensation
Digital filtering
Settings range

$85 \sim 265 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
7 VA
$>1 \mathrm{M} \Omega$
$-1999 \sim 9999$
$10 \sim 100$ Times
$-1999 \sim 9999$

| INPUT SIGNAL | | RANGE |
| :---: | :---: | :---: | ACCURACY

(1) $R \& S$, accuracy $\pm 19^{\circ} \mathrm{C}$ when the range is $0 \sim 500^{\circ} \mathrm{C}$
(2) B does not guarantee accuracy for the range $0 \sim 400^{\circ} \mathrm{C}$
(3) mA only for TP 720

ALARM FUNCTION

Types of alarm	Absolute value alarm Discrepancy alarm Area alarm
Set value	$0 \sim 99 \mathrm{~s}$
Alarm Output	SPST NA, 5A/250Vac (TP 720 3A)
Method of action	Alarm activation Deactivation delay
Output signal	Alarm relay output

OTHER FUNCTIONS	
Sensor break detection	Indication on front (TP 720)
Irregularities detection at heater supply	Alarm when there is no current or the set value is reached (TP 720)
Remote setting	Capacity to change adjustment
Parameters lock	3 access levels which permit:
Level 1	Input signal, alarm adjustment, adjustment values, control type
Level 2	Alarm adjustment, adjustment values, control type
Level 3	Total lock

MARK

EN 61010, EN 61000, EN 55011

CONTROL FUNCTIONS

Control method
Fraction value
Integral time
Differential time
Hysteresis Alarm setting
Sampling interval
Output control cycle

ON/OFF

PID + Autotuning
PID + FUZZY + Autotuning

OUTPUT SIGNAL

OUTPUT SIGNAL	TP 720	TP 731	TP 750	
Main control	SPST NO 3A/250Vac	SPDT NO-NC 5A/250Vac	SPDT NO-NC 5A/250Vac	
Relay	$0 / 12 \mathrm{Vdc}$ (NPN) ; Max. 20 mA			
Pulse (SSR)	$4 \sim 20 \mathrm{~mA}$			
Analogue	0~10 Vcc Max. 600 Ω			
(Retransmission)	TP 720	TP 731	TP 750	
Secondary Control	SPST NO	SPST NO	SPST NO	
Relay	3A/250Vac	5A/250Vac	5A/250Vac	
Pulse (SSR)	$0 / 12 \mathrm{Vdc}$ (NPN) ; Max. 20 mA			
Analogue	$4 \sim 20 \mathrm{~mA}$			
(Retransmission)	$0 \sim 10 \mathrm{Vdc}$ Max. 600Ω			

STRUCTURE			
Models	TP 720	TP 731	TP 750
Assembly	On panel	On panel	On panel
IP Protection	IP 65	IP 56	IP65

COMMUNICATIONS	
Interface	RS485
Protocol	ModBus RTU or ASCII
Data Format	8 bits, Bit Check: odd/even/none Stop Bit: 1 or 2 bits
Speed (bauds)	$600,1200,2400,4800,9600,19200,38000$
Address	$000 \sim 255$
Memory	EEPROM

LED'S			
Models	TP 720	TP 731	TP 750
Output	$\times 1$	$\times 2$	$\times 2$
Alarm	$\times 1$	$\times 2$	$\times 2$
Celsius			$\times 1$
Fahrenheit			$\times 1$

7 SEGMENT DISPLAY			
Models	TP 720	TP 731	TP 750
Red PV	$0,36^{\prime \prime}$	$0,36 "$	$0,56^{\prime \prime}$
Green SV	$0,28 "$	$0,36 "$	$0,36 "$

TP 7 MODEL LIST

Dimensions	$\begin{aligned} & 20 \\ & 31 \end{aligned}$	$\begin{aligned} & 48 \times 48 \mathrm{~mm} \\ & 48 \times 96 \mathrm{~mm} \end{aligned}$
Control Output 1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Output relay Output 4~20 mA
Control Output 2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	None Output relay
Alarm Output	1	1 set
Retransmission	0	None
Communications	1	None RS485

Other options, configurations or sizes, please consult

Circular Amp Chart Recorder

AMP CHART RECORDER

Circular Chart Recorder products serves industrial market requirements for high quality data acquisition and monitoring products and systems.

- Highly Precise sealed potentiometer as a feedback element.
- Highly precise \& Accurate Stepper motor.
- Calibration through 2 potentiometers.
- Simple Interface
- IP 65

Registers most of the variable processes such as temperature, pH conductivity, humidity or alternant current.
High reliability through servomotor.

FAR

C ϵ

CIRCULAR CHART REGISTRY

DIMENSIONS and CUTOUT (mm)

CUTOUT: $344,5 \times 255 \times 120 \mathrm{~mm}$

Current Measurement for Chart Recorder

MULTITAP TRANSFORMER

- Ratings: 200 / 150 / 100 / 75 / 50:5, 10VA.
- 600V, 10 kV.
- Laminated Steel Core.
- Ext. PVC coating.

Model	Code
CT MULTITAP 50-75-100-150-200/5	41726

Accuracy class 0.5

Primary $\ldots . . / 5 A$	Burden
50	5 VA
75	5 VA
100	5 VA
150	7.5 VA
200	10 VA

STANDARDS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate

$$
\text { UNE-EN } 60 \text { 044-1 (7.1) Short circuit }
$$

UNE-EN 60 044-1 (7.2) Heating test
UNE-EN 60 044-1 (11.4) Determination of errors
UNE-EN 60.695-2-11 Glow wire test

CT-M

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate
UNE-EN 60 044-1 (5.3) Frequency withstand volt. between secondary windings UNE-EN 60 044-1 (8.4) Overvoltage tests between turns
UNE-EN 60 044-1 (11.4, 11.5) Determination of errors

WINDING

$177,8 \mathrm{~mm}$

NOTES:

- LEAD WIRES ARE \#12 AWG STYLE $1015,105^{\circ} \mathrm{C}, 600 \mathrm{~V}, 2,5 \mathrm{~mm}^{2}$
- WINDING WIRE IS REA \#14 AWG HTAIH
- LEAD WIRES LENGTH 180 mm

Selection guide

CONTROL RELAYS

MODELS	NOMINAL VOLTAGE	RANGE	λ	(\%)	$-7 \rightarrow$	i°	\%	U>	\boldsymbol{U}	$*_{N}$	Hz> $\mathrm{Hz}<$
S2	$3 \times 230 \mathrm{Vac}$		-	-							
S4	$3 \times 400 \mathrm{Vac}$		-	-							
ST2	$3 \times 230 \mathrm{Vac}$		-	-	-		-				
ST4	$3 \times 400 \mathrm{Vac}$		-	-	-		-				
ST2-D	$3 \times 230 \mathrm{Vac}$		-	-	-		-				
ST4-D	$3 \times 400 \mathrm{Vac}$		-	-	-		-				
T2	230 Vca	$\begin{gathered} -5^{\circ} \mathrm{C} /+5^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C} \end{gathered}$				-					
T2	24 Vac-dc	$\begin{gathered} -5^{\circ} \mathrm{C} /+5^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C} \end{gathered}$				-					
TST-24	24 Vac-dc	$\begin{gathered} -5^{\circ} \mathrm{C} /+5^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C} \end{gathered}$	-	-	-	-	-				
MT2	230 Vac				-		-				
U1D-24D	24 Vdc	19-28						-	-		
U1D-115	115 Vac	90-135						-	-		
U1D-230	230 Vac	160-275						-	-		
U3S-230	230 Vac	185-290	-	-				-	-		
U3S-420	420 Vac	350-500	-	-				-	-		
U3N-230	230 Vac	200-260	-	-				-	-	-	
U3N-400	400 Vac	340-460	-	-				-	-	-	
U3N-440	440 Vac	380-500	-	-				-	-	-	
H	115 Vac	$50 / 60 \pm 3,5 \mathrm{~Hz}$									-
H	230 Vac	$50 / 60 \pm 3,5 \mathrm{~Hz}$									-

EARTH LEAKAGE
 PROTECTION

Introduction

The safety of people and human capital is always important. Fanox Earth Leakage Relays are the most effective devices to ensure protection against the dreaded risk of electrical leakage at low voltage.
Our relays feature characteristics that are ideal for preventing hazardous situations, such as:

- Super Immune: Our relays are specially designed to work in environments with extreme electrical noise, providing signal immunity to interferences such as frequency. This helps avoiding false alarms and unnecessary stops.
- Enhanced security: The enhanced security feature is a backup metering channel. An alarm is triggered to inform of the need for maintenance at the next halt.
- Easy maintenance: The equipment allows for testing without the need to stop any ongoing processes.
- Small size of 22.5 mm : The D30 relay is also known for its small size. It is ideal for manufacturers of MCC's which have limited panel space.
- Versatile: Positive or negative logic can be selected making the relay more flexible at use.

Earth Leakage Relays WITH BUILT-IN Toroidal Transformer

MULTIRANGE RELAY

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- Sensitivity from 0,025 to 25A.
- Trip time delay from 0,02 to 5 s
- Modular size. DIN rail mounting
- Protection front cover.

MULTIRANGE RELAY

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- Sensitivity from 0,025 to 25A.
- Trip time delay from 0,02 to 5 s .
- Compact device. Suitable for motor control centers (MCC).

ELR-A

ELR-T

MODELS	ELR-A		ELR-T60		ELR-T110	
Sensitivity	Adjustable from $0,025 \mathrm{~A}$ to 25 A	Adjustable from 0,025A to 25 A				
Trip time delay	Adjustable from $0,02 \mathrm{~s}$ to 5 s		Adjustable from $0,02 \mathrm{~s}$ to 5 s			
Aux. voltage supply $50 / 60 \mathrm{~Hz}$	$24-48 \mathrm{Vdc}, \mathrm{ac}$	$110 \mathrm{Vdc}, \mathrm{ac}$ $230-400 \mathrm{Vac}$	$24-48 \mathrm{Vdc}$, ac	$110 \mathrm{Vdc}, \mathrm{ac}$ $230-400 \mathrm{Vac}$	$24-48 \mathrm{Vdc}, \mathrm{ac}$	$110 \mathrm{Vdc}, \mathrm{ac}$ $230-400 \mathrm{Vac}$
Code	$\mathbf{4 1 0 1 7}$	$\mathbf{4 1 0 1 5}$	$\mathbf{4 1 1 0 7}$	$\mathbf{4 1 1 0 5}$	$\mathbf{4 1 1 0 2}$	$\mathbf{4 1 1 0 0}$

CHARACTERISTICS	ELR-A: Built-in $\varnothing 28 \mathrm{~mm} \mathrm{/} \mathrm{ELR-T:} \mathrm{Built-in} \varnothing 60 \mathrm{~mm}$ and $\varnothing 110 \mathrm{~mm}$
Toroidal transformer	-
Max. length between relay and transformer	Automatic, manual and remote (in manual mode disconnect the aux. supply during 1s)
Reset mode	2 LED's: ON + Trip
Signalling LED's	ELR-A: Selectable: normally de-energized or energized ELR-T: Normally de-energized
Output contacts mode	ELR-A: 2 change over NO-NC / ELR-T: 1 change over NO-NC
Output contacts	5 - 250 V
Switching power (resistive load)	
Maximum terminal section	$2,5 \mathrm{~mm}{ }^{2}$
Maximum consumption	3 VA
Modular size	ELR-A: 6 modules $\times 17,5 \mathrm{~mm}=105 \mathrm{~mm} / \quad$ ELR-T: No
Frequency	$50 / 60 \mathrm{~Hz}$
Protection degree / weight	ELR-A: IP-20 / 0,4 kg / \quad ELR-T: IP-20 / 0,4 y 0,6 kg
Storage / operation temperature	$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
Standards	IEC $41-1$, IEC $255, \mathrm{VDE} \mathrm{0664} ,\mathrm{EN} \mathrm{50081-1} ,\mathrm{EN} \mathrm{50082-2}$

DIMENSIONS (mm)

ELR-A

ELR-T

	A	B	C	D	E	F	G	H	K
ELR-T60	60	100	60	110	47	70	60	50	-
ELR-T110	110	150	110	160	70	70	60	50	-

Earth Leakage Relays WITHOUT BUILT-IN Toroidal Transformer

RELAY WITH ADJUSTABLE DELAY TIME AND SENSITIVITY

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- To be used with CT-1 and CTD-1 toroidal transformers (See page 120)
- Modular size. DIN rail mounting.
- Sealable front cover.

MULTIRANGE RELAY

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- To be used with CT-1 and CTD-1 toroidal transformers (See page 120).
- Modular size. DIN rail mounting.
- Sealable front cover.

ELR-B

ELR-3C

MODELS	ELR-B		ELR-3C	
Sensitivity	0,3 A or 0,5 A		Adjustable from 0,025 A to 25 A	
Trip time delay	0,02 s or 0,5 s		Adjustable from 0,02 s to 5 s	
Aux. voltage supply $50 / 60 \mathrm{~Hz}$	$24-48 \mathrm{Vdc}$, ac	110 Vdc , ac 230-400 Vac	24-48 Vdc, ac	110 Vdc , ac $230-400$ Vac
Code	41012	41010	41005	41000

CHARACTERISTICS	
Toroidal transformer	In combination with CT-1
Max. length between relay and transformer	20 m with cables twisted
Reset mode	Automatic, manual and remote (in manual mode disconnect the aux. supply during 1s)
Signalling LED's	2 LED's: ON + Trip
Output contacts mode	Normally de-energized
Output contacts	1 change over NO-NC
Switching power (resistive load)	5 A - 250V
Maximum terminal section	$2,5 \mathrm{~mm}^{2}$
Maximum consumption	3 VA
Modular size	3 modules $\times 17,5 \mathrm{~mm}=52,5 \mathrm{~mm}$
Frequency	$50 / 60 \mathrm{~Hz}$
Protection degree / weight	IP-20 / 0,2 kg
Storage / operation temperature	$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
Standards	$\mathrm{IEC} 41-1, \mathrm{IEC} 255, \mathrm{VDE} 0664, \mathrm{EN} \mathrm{50081-1} ,\mathrm{EN} \mathrm{50082-2}$

DIMENSIONS (mm)

WIRING DIAGRAM

D30 / DM30

Earth Leakage Relays WITHOUT BUILT- IN Toroidal Transformer

SUPERIMMUNIZED MULTIRANGE RELAY 22,5 mm

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- Very high level of immunity.
- 22,5 mm wide. Saving space in the distribution board.
- DIN rail mounting
- To be used with CT-1 and CTD-1 toroidal transformers (See page 120).
- Suitable for Motor Control Centres (MCC), electrical distribution boards and control panels in general.

SUPERIMMUNIZED MULTIRANGE RELAY

- Electronic relays with adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- Very high level of immunity
- Modular size. DIN rail mounting.
- To be used with CT-1 and CTD-1 toroidal transformers (See page 120).
- Suitable for electrical distribution boards and control panels in general.

DIMENSIONS (mm)

D30

DM30

WIRING DIAGRAM

SUPERIMMUNIZED MULTIRANGE RELAY

WITH AUTOMATIC RECLOSING

- Electronic relays with automatic reclosing up to 3 attempts with defined (1 m) or adjustable (1 to 60 s) time.
- Adjustable time delay and sensitivity.
- Suitable for direct pulse current.
- Immune to external disturbances.
- Very high level of immunity.
- Modular size. DIN rail mounting.
- To be used with CT-1 and CTD-1 toroidal transformers (See page 120).
- Suitable for electrical distribution boards in general.
- Sealable front cover.

DR3OF

DR30A

MODELS	DR30F			DR30A			
Reclosing time	60 s					Adjustable from 1 s to 60 s	
Sensitivity	Adjustable from $0,03 \mathrm{~A}$ to 30 A						
Trip time delay	Adjustable from $0,02 \mathrm{~s}$ to 5 s						
Aux. voltage supply $50 / 60 \mathrm{~Hz}$	120 Vac	230 Vac	24 Vdc	120 Vac	230 Vac	24 Vdc	
Code	$\mathbf{4 1 0 2 6}$	$\mathbf{4 1 0 2 4}$	$\mathbf{4 1 0 2 7}$	$\mathbf{4 1 0 2 8}$	$\mathbf{4 1 0 1 9}$	$\mathbf{4 1 0 2 9}$	

CHARACTERISTICS				
Toroidal transformer	In combination with CT-1			
Max. length between relay and transformer	Cable section mm^{2}			
	0,22 mm ${ }^{\text {2 }}$	0,75 mm ${ }^{\text {2 }}$	$1 \mathrm{~mm}^{2}$	1,5 mm ${ }^{2}$
	Max. lenght m			
	15 m	55 m	75 m	110 m
Reset mode	Automatic, manual and remote (in manual mode disconnect the aux. Supply during 1s)			
Signalling LED's	2 LED's: ON + $\underline{\underline{T}}_{\underline{\underline{T}}}$ (trip) / 2 LED's: Numbers of reclosing / 4 LED's: \% measurement			
Output contacts mode	Selectable: normally de-energized (N) or energized (P)			
Output contacts	2 change over NO-NC			
Switching power (resistive load)	I_{th} : 5A; AC15-250V-2A; DC13-30V-2A			
Maximum terminal section	$2,5 \mathrm{~mm}^{2}$			
Maximum consumption	2,5 VA - 230 V			
Modular size	3 modules $\times 17,5 \mathrm{~mm}=52,5 \mathrm{~mm}$			
Frequency	$50 / 60 \mathrm{~Hz}$			
Protection degree / weight	IP-20 / 0,2 kg			
Storage / operation temperature	$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$			
Standards	EN 50263, EN 61543 (A11), EN 60255-5, VDE 0664, 61008-1/A14, 61000-4-11			

DIMENSIONS (mm)

DR30

LOW AND MEDIUM VOLTAGE TRANSFORMERS

Introduction

Current Transformers

Current transformers sample the line current and convert it into safety and measurable values for the normalized standards of instruments, metering devices and other metering and control devices.

Nominal values of the current transformers are defined as the ratio between the primary and the secondary current.
They are classified according to the main isolation used:
Wound Primary type, Bar Primary type, Toroidal type and for Terminal blocks type.
These current transformers can be used for two different purposes: Measurement or Protection. The correct choice of the CT is essential in order to avoid faults and degradation that would lead into economic losses or even into dangerous situations.
Both Measurement and Protection current transformers have to provide a secondary current that is proportional to the one of the primary.

- The main purpose of Measurement Transformers is to measure currents without the activation of corrective responses when abnormal values arise. Within the range of the nominal current good accuracy is needed while out of the threshold of the nominal range that accuracy is unnecessary. For that reason, the measurement transformers have a very low saturation factor and a high security factor to avoid overloads in the metering devices.
- Protection transformers are designed to give a warning or correction advice when abnormal values are measured. With high values of fault current, a high saturation factor is required in order to maintain a good accuracy. The secondary current, proportional to the primary, could reach very high values and should always be supported by protection devices.

Power transformers

The Power Transformers have a special winding which allows them to have a high voltage primary and a low voltage secondary. They have a very low nominal power and their unique purpose is to give a voltage sample of the power system to measure it with the incorporated instruments.

Being their principal objective the voltage sampling, they must be specially accurate so that they do not to distort the real values. The selection of the transformer will be conditioned by the accuracy required in its readings.

Protection \& Measurement for Low Voltage

CURRENT TRANSFORMERS

- Up to 1000 A of primary current.
- Transformer ratio .../5.
- S ealable terminal box connection, metal brackets for fitting and bus-bar holders included.
- Standards: IEC 60044-1, BS 2627

Primary $\ldots .$. $\mathbf{5 A}$	Model	Code	VA class		
			-	-	3
$\mathbf{7 5}$	CT20		-	2	3,5
$\mathbf{1 0 0}$	CT20	$\mathbf{4 1 4 0 4}$	1,5	2,5	3,75
$\mathbf{1 5 0}$	CT20	$\mathbf{4 1 4 0 6}$	2,5	3,5	5
$\mathbf{2 0 0}$	CT30	$\mathbf{4 1 4 1 2}$	3,5	5	7,5
$\mathbf{2 5 0}$	CT30	$\mathbf{4 1 4 1 4}$	5	7,5	10
$\mathbf{3 0 0}$	CT30	$\mathbf{4 1 4 1 6}$	5	7,5	10
$\mathbf{4 0 0}$	CT30	$\mathbf{4 1 4 1 8}$	5	7,5	10
$\mathbf{5 0 0}$	CT50	$\mathbf{4 1 4 2 2}$	7,5	10	20
$\mathbf{6 0 0}$	CT50	$\mathbf{4 1 4 2 4}$	10	15	25
$\mathbf{8 0 0}$	CT50	$\mathbf{4 1 4 2 6}$	15	20	30
$\mathbf{1 0 0 0}$	CT50	$\mathbf{4 1 4 2 8}$	15	20	30

DIMENSIONS CT (mm)

CT

CHARACTERISTICS	
Overload	$1,2 \boldsymbol{I}_{N}$
Max. line voltage bus-bars / cable1000V	$660 \mathrm{~V} / 1000 \mathrm{~V}$
Max. size: bus-bars / \varnothing cable (mm) CT 20	$25 \times 5 / \varnothing 20$
Max. size: bus-bars / \varnothing cable (mm) CT 30	$40 \times 10 / \varnothing 28$
Max. size: bus-bars / \varnothing cable (mm) CT 50	$60 \times 12 / \varnothing 44$

WIRING DIAGRAM FOR C9-GL16 - P19 - PF16-G

$$
\boldsymbol{I}_{\mathrm{B}}=\frac{\boldsymbol{I}_{\mathrm{N}} \text { motor }}{\boldsymbol{I}_{\mathrm{N}} C T} \times 5 \times \mathrm{n}
$$

Protection \& Measurement for Low Voltage

TOROIDAL TRANSFORMERS

- Provided burden up to 15 VA.
- Transformer ratio .../5.
- Fixing base incluided.

Primary $\ldots . / 5 \mathbf{A}$	Code	Model	VA class
			$\mathbf{0 , 5}$
$\mathbf{5 0}$	$\mathbf{4 1 3 6 5}$	CT50A	5
$\mathbf{7 5}$	$\mathbf{4 1 3 6 6}$	CT50B	5
$\mathbf{1 0 0}$	$\mathbf{4 1 3 6 7}$	CT50C	5
$\mathbf{1 5 0}$	$\mathbf{4 1 3 6 8}$	CT50C	15
$\mathbf{2 0 0}$	$\mathbf{4 1 3 6 9}$	CT50C	15
$\mathbf{3 0 0}$	$\mathbf{4 1 3 7 1}$	CT50C	15

CT

CHARACTERISTICS	
Line voltage	600 V
\varnothing cable (mm) CT50A	$\varnothing 44$
\varnothing cable (mm) CT50B	$\varnothing 44$
\varnothing cable (mm) CT50C	$\varnothing 45$

DIMENSIONS (mm)

CT50A and CT50B models

CT50C models

$\mathbf{m m}$	CT50A	CT50B	CT50C
A \varnothing	44	44	45
B	102	102	100
C	74	74	73
D	102	102	101
E	123	123	122
F	120	80	40
G	12×15	12×15	12×15
H	8	8	NA
I	80	80	NA

CT-1 / CTD-1

Earth Leakage Protection \& Measurement for Low Voltage

TOROIDAL TRANSFORMERS

- To be used with ELR-B, ELR-3C, D30, DM30 and DR30 relays.
- The transformer and relay assembly sensitivity is fixed by the relay
- The toroidal transformer CTD-1/28 is specifically designed for DIN rail mounting.

Working principles: The toroidal transformer is installed between the source and the load. The system works on the current balance principle. In a correct installation the vector sum of the currents is zero and the relay will not trip.
In case of an insulation fault on the circuit a leakage current flows to earth. Now the vector sum of the current passing through the transformer is not zero, this imbalance is detected by the transformer, which induces a current in the secondary winding which is connected to the relay.
If the fault level is higher than the selected sensitivity, and when the trip time delay has elapsed, the relay trips and actuates on the shunt trip of a circuit breaker or the coil of a contactor interrupting the supply to the load.
The dimensioning of the toroidal transformer depends on the diameter of all active wires (not earth conductors) put through the transformers.

Type	Code	Inner $\boldsymbol{\varnothing}$	Weight (kg)
CTD-1/28	$\mathbf{4 1 0 5 5}$	28 mm	0,2
CT-1/35	$\mathbf{4 1 0 6 0}$	35 mm	0,2
CT-1/60	$\mathbf{4 1 0 6 5}$	60 mm	0,3
CT-1/80	$\mathbf{4 1 0 7 0}$	80 mm	0,5
CT-1/110	$\mathbf{4 1 0 7 5}$	110 mm	0,5
CT-1/160	$\mathbf{4 1 0 8 0}$	160 mm	1,4
CT-1/210	$\mathbf{4 1 0 8 5}$	210 mm	1,5
CTA-1/110	$\mathbf{4 1 0 7 6}$	110 mm	0,5
CTA-1/160	$\mathbf{4 1 0 8 1}$	160 mm	1,4
CTA-1/210	$\mathbf{4 1 0 8 6}$	210 mm	1,5

CT-1

Characteristics	CT-1
Thermoplastic material	UL 94-V0
Operating frequency	$47-63 \mathrm{~Hz}$
Insulation	$2,5 \mathrm{Kv} \mathrm{50} \mathrm{Hz,1} \mathrm{~min}$
Protection degree	IP 20
Continuous overload	1000 A
Thermal overload	$40 \mathrm{kA}(1 \mathrm{sec})$
Operating temperature	$\mathrm{De} 0 \mathrm{a}+50^{\circ} \mathrm{C}, \mathrm{U.R./R.H} \mathrm{<90} \mathrm{\%} \mathrm{n.c}$.
Storage temperature	De -20 a $+70^{\circ} \mathrm{C}$
Connections	Tornillo, Max $1,5 \mathrm{~mm} 2$

DIMENSIONS CT-1 (mm)

Electric Energy Measurement for Remote Management in Low Voltage

CURRENT TRANSFORMER FOR OUTDOOR

- Designed for outdoor installation.
- Transformer ratio 400/5.
- Compact size.
- With core and cable incorporated, spliceless.

Primary $\ldots . . / 5 A$	Model	Code	VA class
$\mathbf{4 0 0}$	CT60II EXT/1,5	$\mathbf{4 1 4 4 3}$	$\mathbf{0 , 5} \mathbf{~ s}$
$\mathbf{4 0 0}$	CT60II EXT/2,5	$\mathbf{4 1 4 4 2}$	5

MECHANICAL CHARACTERISTICS	CT60II EXT/1,5	CT60II EXT/2,5
Material	Resin DIAPOL 509	
Secondary cable	RZ1-K Black	
Cable type	Bipolar (Blue and Brown)	
Terminals	Without terminals	
Cable section	$1,5 \mathrm{~mm}^{2}$	$2,5 \mathrm{~mm}^{2}$
Cable length	6 m	10 m
Inner diameter	60 mm maximum	
Outer diameter	$110 \times 90 \mathrm{~mm}$	
Height	35 mm	

ELECTRICAL CHARACTERISTICS	
Frecuency	$50 / 60 \mathrm{~Hz}$
Transformer ratio	$400 / 5$
Maximum Voltage secondary open	48 Vpeak
Accuracy voltage	5 VA
Maximum Voltage Um	$0,72 \mathrm{kV}$
Isolation voltage	3 kV
Accuracy class	$0,5 \mathrm{~s}$
Security factor	5
Protection degree	IP 65
Accuracy limit	150%
Insulation class	E

ADMISSIBLE STEPS	
$1 \times 50,2 \times 50,1 \times 95$ (terminals included)	Suitable
1×150 (terminals included)	Suitable
$2 \times 95,2 \times 150,3 \times 150,3 \times 95$ (terminals included)	Suitable
1×240, pletina 60×10 (terminals included)	Suitable

CT6OII EXT

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate
UNE-EN 60 044-1 (7.1) Short circuit
UNE-EN 60 044-1 (7.2) Heating test
UNE-EN 60 044-1 (11.4) Determination of errors
UNE-EN 60.695-2-11 Glow wire test
UNE-EN 60 044-1 (7.4) Wet test for outdoor type transformers
UNE-EN 62208 (9.11) Verification of resistance to weathering
UNE-EN 20324 Degrees of protection provided by enclosures (IP65)

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate UNE-EN 60 044-1 (5.3) Frequency withstand volt. between secondary windings UNE-EN 60 044-1 (8.4) Overvoltage tests between turns
UNE-EN 60 044-1 (11.4, 11.5) Determination of errors

DIMENSIONS CT (mm)

CT80II / CT4II

Electric Energy Measurement for Remote Management in Low Voltage

CURRENT TRANSFORMERS UP TO 1800 A

- Up to 1800 A of primary current.
- Transformer ratio 1200/5.
- Sealable plastic cover, fixing base and bus-bar.
- Certificate model for pricing.

Primary $\ldots . .5 A$	Model	Code	VA class
$\mathbf{1 2 0 0}$	CT80II	$\mathbf{4 1 4 4 0}$	$\mathbf{0 , 5} \mathbf{~}$
$\mathbf{1 2 0 0}$	CT4II	$\mathbf{4 1 4 4 5}$	5

CHARACTERISTICS

Overload	$1,5 \boldsymbol{I}_{\mathrm{N}}$
Frecuency	$50 / 60 \mathrm{~Hz}$
Maximum Voltage Um	$0,72 \mathrm{kV}$
Isolation voltage	3 kV
Short circuit thermal current Ith	72 kA
Short circuit dynamic current Idyn	$2,5 \times$ Ith
Accuracy limit	150%
Security factor	5
Insulation class	E

STANDARDS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate UNE-EN 60 044-1 (7.1) Short circuit
UNE-EN 60 044-1 (7.2) Heating test
UNE-EN 60 044-1 (11.4) Determination of errors
UNE-EN 60695-2-11 Glow wire test

SUITABLE WIRES AND SECTORS CT8OII

$1 \times 240 \mathrm{~mm}^{2} / 2 \times 240 \mathrm{~mm}^{2} / 3 \times 240 \mathrm{~mm}^{2} / 4 \times 240 \mathrm{~mm}^{2} / 5 \times 240 \mathrm{~mm}^{2}$
$1 \times 300 \mathrm{~mm}^{2} / 2 \times 300 \mathrm{~mm}^{2} / 3 \times 300 \mathrm{~mm}^{2}$
Primary passing through minimum dimensions (mm^{2}) 81×65

C

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate
UNE-EN 60 044-1 (5.3) Frequency withstand volt. between secondary windings
UNE-EN 60 044-1 (8.4) Overvoltage tests between turns
UNE-EN 60 044-1 (11.4, 11.5) Determination of errors

SUITABLE WIRES AND SECTORS CT4II

Cu: $1 \times 300 \mathrm{~mm}^{2} / 2 \times 300 \mathrm{~mm}^{2} / 3 \times 300 \mathrm{~mm}^{2} / 4 \times 300 \mathrm{~mm}^{2}$
Al: $2 \times 240 \mathrm{~mm}^{2} / 3 \times 240 \mathrm{~mm}^{2} / 4 \times 240 \mathrm{~mm}^{2} / 5 \times 240 \mathrm{~mm}^{2}$
Primary passing through minimum dimensions $\left(\mathrm{mm}^{2}\right) 3 \times 100 \times 12 \mathrm{~mm}$

CT4II

Mounting detail

Electric Energy Measurement for Remote Management in Low Voltage

TRANSFORMADOR DE INTENSIDAD DE RANGO ABRIBLE

- Up to 1800 A of primary current.
- Transformer ratio 1200/5.
- Sealable plastic cover, fixing base and bus-bar.
- Certificate model for pricing.

Primary $\ldots . . / 5 A$	Model	Code	VA class
$\mathbf{1 2 0 0}$		$\mathbf{4 1 4 4 1}$	$\mathbf{0 , 5} \mathbf{~ s}$

CHARACTERISTICS	$1,5 \boldsymbol{I}_{\mathrm{N}}$
Overload	$50 / 60 \mathrm{~Hz}$
Frecuency	YES
Short circuiting terminal blocks for opensecondary	48 V
Maximum voltage secondary open	$0,72 \mathrm{kV}$
Maximum Voltage Um	3 kV
Isolation voltage	72 kA
Short circuit thermal current Ith	$2,5 \times$ lth
Short circuit dynamic current Idyn	150%
Accuracy limit	5
Security factor	E
Insulation class	

STANDARDS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate
UNE-EN 60 044-1 (7.1) Short circuit
UNE-EN 60 044-1 (7.2) Heating test
UNE-EN 60 044-1 (11.4) Determination of errors
UNE-EN 60695-2-11 Glow wire test

ADMISSIBLES STEPS

$1 \times 240,2 \times 240,1 \times 300,2 \times 300$ (terminals included) Suitable
Bar 80x50

DIMENSIONS CT (mm)

CT80II ABR

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate
UNE-EN 60 044-1 (5.3) Frequency withstand volt. between secondary windings
UNE-EN 60 044-1 (8.4) Overvoltage tests between turns
UNE-EN 60 044-1 (11.4, 11.5) Determination of errors

$\mathbf{m m}$	CT80II EXT
A	50
B	80
C	78
D	114
E	145
F	32
G	32
H	32
I	33

Current Measurement for Chart Recorder

MULTITAP TRANSFORMER

- Ratings: 200 / 150 / 100 / 75 / 50:5, 10VA.
-600V, 10 kV .
- Laminated Steel Core.
- Ext. PVC coating.

Model	Code
CT MULTITAP 50-75-100-150-200/5	41726

Accuracy class 0.5

Primary $\ldots / 5 \mathrm{~A}$	Burden
50	5 VA
75	5 VA
100	5 VA
150	7.5 VA
200	10 VA

STANDARDS

UNE-EN 60 044-1 $(8.1,11.7,12.7)$ Terminal marking and nameplate UNE-EN 60 044-1 (7.1) Short circuit UNE-EN 60 044-1 (7.2) Heating test
UNE-EN 60 044-1 (11.4) Determination of errors
UNE-EN 60.695-2-11 Glow wire test

CT

INDIVIDUAL TESTS

UNE-EN 60 044-1 (8.1, 11.7, 12.7) Terminal marking and nameplate UNE-EN 60 044-1 (5.3) Frequency withstand volt. between secondary windings UNE-EN 60 044-1 (8.4) Overvoltage tests between turns
UNE-EN 60 044-1 (11.4, 11.5) Determination of errors

WINDING

DIMENSIONS (mm)

NOTES:

- LEAD WIRES ARE \#12 AWG STYLE $1015,105^{\circ} \mathrm{C}, 600 \mathrm{~V}, 2,5 \mathrm{~mm}^{2}$
- WINDING WIRE IS REA \#14 AWG HTAIH
- LEAD WIRES LENGTH 180 mm

Protection \& Measurement for Medium Voltage

CURRENT TRANSFORMER FOR MV

- Up to 1200 A of primary current.
- Transformer ratio 1000/1.
- Terminal cover, poka yoke xing base
- Certicate model.

Primary $\ldots . / 5$ A	Model	Code	Accuracy	
1000	CT SPMT $1000 / 1 A$		$0,2 \mathrm{~s}$	Measurement
Protection				

CT-SPMT

TESTS

QUALIFICATION TESTS	STANDARDS
Heating test	UNE EN 61869-2 ap. 7.1.2
Accuracy test	UNE EN 61869-2 ap. 7. 1.3.1, 7.1.3.3
Short-time current tests	UNE EN 61869-2 ap. 7.1.4
Verification of the degree of protection provided by enclosure	UNE EN 61869-2 ap. 7.1.5
Tests with open secondary in fault conditions	UNE EN 61869-2 ap. 7.1.6
Saturation test for current and demagnetization	UNE EN 61869-2 ap. 7.1.3.4
Glow wire test	UNE EN 60.695-2-11 ap. 7.1.7

INDIVIDUAL TESTS	STANDARDS
Power-frequency withstand voltage test for primary winding insulation	UNE EN 61869-2 ap. 7.1.2
Power-frequency withstand voltage test for secondary terminals	UNE EN 61869-2 ap. 7.2.2
Determination of errors	UNE EN 61869-2 ap. 7.2.3.1, 7.1.3.3
Overvoltage test between turns	UNE EN 61869-2 ap. 7.2.3.4
Verification of markings	UNE EN 61869-2 ap. 7.3.3

CHARACTERISTICS AND DIMENSIONS

CHARACTERISTICS	
Overload	$1,2 \boldsymbol{I}_{\mathrm{N}}$
Frequency	$50 / 60 \mathrm{~Hz}$
Maximum Voltage Um	$0,72 \mathrm{kV}$
Isolation Voltage	3 kV
Short circuit thermal current Ith	20 kA
Short circuit dynamic current Idyn	$2,5 \mathrm{xlth}$
Accuracy limit	150%
Security factor	5
Insulation class	E

Current Limiting \& Filtering

CURRENT LIMITANT INPUT REACTOR

- Nominal Current: 250 A
- Input voltage: 480 V (Up to 690V)
- Inductance: 0.095 mH
- Linearity whitout saturation until: 1.5 x In
- Maximum thermal overload: 1.3 x In
- Frequency: 50 or 60 Hz
- Thermal Class: $F\left(140{ }^{\circ} \mathrm{C}\right) / \mathrm{Ta}=40^{\circ} \mathrm{C}$
- Protection against indirect contacts
- Connections by terminals
- Winding Class $\mathrm{H}\left(200^{\circ} \mathrm{C}\right)$ and Isolating Class F $\left(140^{\circ}\right)$, Voltage Test $3 K V$ against mass

Three phase reactor to absorb line spikes, switching voltage dips, to eliminate harmonics or decrease the di/dt that semiconductors are affected.Ripple decrease at switching frequency and its main harmonics. Continuous service and inner installation.

Model	Code
CLR 250A INPUT REACTOR	41735

STANDARDS

IEC 60289
IEC 60076
IEC 60726
Directives 2006/95/CEE

DIMENSIONS (mm)

Voltage transformation for Low Voltage

POTENTIAL TRANSFORMER

Transformer designed in double cell, encapsulated in poliuretane.

- Dielectrical strength 3000Vac 50 Hz between primary and secondary.
- Input voltage: $480 \mathrm{~V} \pm 5 \%$.
- Output voltage: 120V.
- Burden: 50VA Max.
- Weight: 1,2kg.
- Possibility of soldering over PCB.
- Accuracy class: 1.

DIMENSIONS (mm)

Dimensions mm	
A	52
B	65
C	81
D	68
E	91
F	57
G	4,5

Cables
Lenght: 150 mm minimum
Section: $0,75 \mathrm{~mm}$ maximum

ELECTRIC SCHEME

MARKING

SURGE PROTECTION

Introduction

The surge protection relays protect installations and eliminate the effects of power surges. They offer the highest level of security in low voltage lines, continuous processes, domestic and tertiary facilities, etc.

They are suitable for manufacturers and system integrators of industrial equipment, photovoltaic applications, wind turbines, etc.

Devices connected to the mains are increasingly susceptible to electrical disturbances in the grid. Hence it is essential to provide adequate protection to avoid major economic and material losses.

The most visible and destructive power surges are often caused by atmospheric discharges (lightning strikes). However, this is not the most common source of such disturbances, as in most cases, the main sources of surges are within the facility installation itself, amongst others for the following reasons:

- Performance of circuit breakers and fuses.
- Connection and disconnection of inductive loads.
- Switching of motors and machines.
- Electrostatic discharge.
- Capacitor's power factor correction.
- Energy transfers in generator sets.

Power Supply Systems \& Installations

SURGES TYPE B (CLASS I)

- Compact equipments for all distribution systems.
- High discharge capacity by "Spark Gap" technology.
- Visual indication of a fault in the equipment.
- With thermal separation device.
- Remote signalling of the protection status.

C

	POWER SUPPLY NETWORK							
Code	41648	41642	41643	41644	41645	41646	41641	41647
Model	VP B25 255/NPE	VP B25 $275 / 1$	$\begin{gathered} \text { VP B25 } \\ \text { 275/1+NPE } \end{gathered}$	$\begin{aligned} & \text { VP B25 } \\ & 275 / 2 \end{aligned}$	$\begin{gathered} \text { VP B25 } \\ \text { 275/2+NPE } \end{gathered}$	$\begin{gathered} \text { VP B25 } \\ 275 / 3 \end{gathered}$	$\begin{gathered} \text { VP B25 } \\ \text { 275/3+NPE } \end{gathered}$	$\begin{gathered} \text { VP B25 } \\ \text { 275/4 } \end{gathered}$
According to IEC 61643-1 (Class)	Class I							
Type of network	π	TN-S	T/TN-S	TN-S	T/TN-S	TN-S	TN-S	T/TN-S
Electrical line	-	1F+NPE (TN-C)	1F+N+PE(T)	$\begin{gathered} \text { 1F+N+PE (TN-S) } \\ 2 \mathrm{~F}+\mathrm{NPE}(\mathrm{TN}-\mathrm{C}) \end{gathered}$	$2 \mathrm{~F}+\mathrm{N}+\mathrm{PE}(\mathrm{TT)}$	$\begin{aligned} & 2 F+N+P E(T N-S) \\ & 3 F+P E(T N-S) \\ & 3 F+N P E(T N-C) \end{aligned}$	$+N+P E(T N-S)$	$\begin{gathered} 3 F+N+P E(T T) \\ 3 F+P E(T) \end{gathered}$
Nominal voltage Un (Vac)	230 Vac							
Maximum continuous operating voltage Uc (Vac)	255 Vac	275 Vac						
Nominal discharge current $(8 / 20 \mu \mathrm{~s}) \mathbf{\operatorname { l n }}(\mathrm{kA})$	50 kA							
Maximum discharge current ($8 / 20 \mu \mathrm{~s}$) $\operatorname{Imax}(\mathrm{kA})$	100 kA							
Impulse current (10/350 $\mu \mathrm{s}$) limp (kA)	25 kA							
Protection level Up (kV) at 30 kA	< $1,8 \mathrm{kV}$							
Response time ta (ns)	$<100 \mathrm{~ns}$	<25 ns						
Maximum back-up fuse (A gL/gG)	160							
№ Modules	4		2		1			

Power Supply Systems \& Installations

SURGES TYPE B+C (CLASS I+II)

- Compact equipments for all distribution systems.
- High discharge capacity by "Spark Gap" technology.
- Visual indication of a fault in the equipment.
- With thermal separation device.
- Remote signalling of the protection status.
- Plug-in protection modules which facilitate maintenance.

C

	POWER SUPPLY NETWORK							
Code	41631	41632	41633	41636	41637	41638	41639	41640
Model	$\begin{gathered} \text { B+C60 } \\ \text { 255/NPE } \end{gathered}$	$\begin{aligned} & B+C 60 \\ & 255 / 1^{*} \end{aligned}$	$\begin{gathered} \mathrm{B}+\mathrm{C} 60 \\ 275 / 1+\mathrm{NPE}^{* * *} \end{gathered}$	$\begin{aligned} & \text { B+C60 } \\ & 275 / 2^{* *} \end{aligned}$	$\begin{gathered} \text { B+C60 } \\ 275 / 2+\text { NPE } \end{gathered}$	$\begin{gathered} B+C 60 \\ 275 / 3 \end{gathered}$	$\begin{gathered} B+C 60 \\ 275 / 4 \end{gathered}$	$\begin{gathered} B+C 60 \\ 275 / 3+\text { NPE } \end{gathered}$
According to IEC 61643-1 (Class)	1+\|I (Class)							
Type of network	π	TN-S	TT/TN-S	TN-S	TT/TN-S	TN-S	TN-S	TT/TN-S
Electrical line	-	1F+NPE (TN-C)	1F+N+PE(TT)	$\begin{aligned} & \text { 1F+N+PE (TN-S) } \\ & 2 \mathrm{~F}+\mathrm{NPE}(\mathrm{TN}-\mathrm{C}) \end{aligned}$	$2 \mathrm{~F}+\mathrm{N}+\mathrm{PE}$ (TT)	$\begin{aligned} & \text { 2F+N+PE (TN-S) } \\ & 3 \mathrm{~F}+\mathrm{PE} \text { (TN-S) } \\ & 3 \mathrm{~F}+\mathrm{NPE}(\mathrm{TN}-\mathrm{C}) \end{aligned}$	$3 \mathrm{~F}+\mathrm{N}+\mathrm{PE}(\mathrm{TN}-\mathrm{S})$	$\begin{gathered} 3 \mathrm{~F}+\mathrm{N}+\mathrm{PE}(\mathrm{TT}) \\ 3 \mathrm{~F}+\mathrm{PE}(T \mathrm{~T}) \end{gathered}$
Nominal voltage Un (Vac)	230 Vac							
Maximum continuous operating voltage Uc (Vac)	255 Vac	275 Vac						
Nominal discharge current $(8 / 20 \mu \mathrm{~s}) \mathbf{I n}(\mathrm{kA})$	30 kA							
Maximum discharge current ($8 / 20 \mu \mathrm{~s}$) Imax (kA)	60 kA							
Protection level Up (kV) at 30 kA	$<1,5 \mathrm{kV}$							
Response time ta (ns)	<25 ns							
Maximum back-up fuse ($\mathrm{A} \mathrm{gL} / \mathrm{gG}$)	125							
N ${ }^{\circ}$ Modules	4		2		1			

[^9]
Power Supply Systems \& Installations

SURGES TYPE C (CLASS II)

- Compact equipments for all distribution systems.
- High discharge capacity via zinc oxide varistors and gas dischargers.
- With thermal separation device.
- Visual indication of a fault in the equipment.
- Remote signalling of the protection status.
- Plug-in protection modules which facilitate maintenance.

C

	POWER SUPPLY NETWORK									
Code	41600	41602	41603	41604	41607	41606	41610	41609	41624	41625
Model	$\begin{aligned} & \text { VP C40 } \\ & 275 / 1 \end{aligned}$	$\begin{aligned} & \text { VP C40 } \\ & \text { 250/NPE } \end{aligned}$	$\begin{gathered} \text { VP C40 } \\ 275 / 2 \end{gathered}$	$\begin{gathered} \text { VP C40 } \\ 275 / 1+\text { NPE } \end{gathered}$	$\begin{aligned} & \text { VP C40 } \\ & 275 / 3 \end{aligned}$	$\begin{gathered} \text { VP C40 } \\ \text { 275/2+NPE } \end{gathered}$	$\begin{gathered} \text { VP C40 } \\ 275 / 4 \end{gathered}$	$\begin{gathered} \text { VP C40 } \\ 275 / 3+\text { NPE } \end{gathered}$	$\begin{gathered} \text { VP C20 } \\ \text { 275/1+NPE } \end{gathered}$	$\begin{gathered} \text { VP C20 } \\ 275 / 3+\text { NPE } \end{gathered}$
According to IEC 61643-1 (Class)	Class II									
Type of network	TT/TN	T	TT/N	T	TT/TN	T	TT/N	T		
Electrical line	$\begin{aligned} & \text { 1P+NPE } \\ & \text { (1) (2) (3) } \end{aligned}$	$\begin{gathered} 1 \mathrm{P}+\mathrm{N} \\ 2 \mathrm{P}+\mathrm{N} \\ 3 \mathrm{P}+\mathrm{N} \\ 3 \mathrm{P} \end{gathered}$	$\begin{aligned} & 1 \mathrm{~F}+\mathrm{N}+\mathrm{PE} \\ & 2 \mathrm{~F}+\mathrm{NPE} \end{aligned}$	$1 \mathrm{~F}+\mathrm{N}$	$\begin{gathered} 2 \mathrm{P}+\mathrm{N}+\mathrm{PE} \\ 3 \mathrm{P}+\mathrm{PE} \\ 3 \mathrm{P}+\mathrm{NPE} \end{gathered}$	$2 \mathrm{P}+\mathrm{N}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{PE}$	$\begin{gathered} 3 P+N \\ 3 P \end{gathered}$	$1 \mathrm{P}+\mathrm{N}$	$\begin{gathered} 3 P+N \\ 3 P \end{gathered}$
Nominal voltage Un (Vac)	230 Vac									
Maximum continuous operating voltage Uc (Vac)	275 Vac	250 Vac	275 Vac							
Nominal discharge current $(8 / 20 \mu \mathrm{~s}) \mathbf{I n}(\mathrm{kA})$	20 kA								10	
Maximum discharge current $(8 / 20 \mu \mathrm{~s}) \operatorname{Imax}(\mathrm{kA})$	40 kA								20	
Protection level Up (kV)	< 1,2 kV	< 1,5 kV	< 1,2 kV						< 1,0 kV	
Protection level at 5 kA (kV)	< 1,0 kV	--	< 1,0 kV						< 0,95 kV	
Response time ta (ns)	$<25 \mathrm{~ns}$	<100 ns	<25 ns							
Maximum back-up fuse (A gL/gG)	125	--	125						100	
N ${ }^{\circ}$ Modules	1	1	2	2	3	3	4	4	2	4
Plug-in modules code	41611	41612	41611	41611/41612	41611	41611/41612	41611	41611/41612	41626/41627	41626/41627

By using individual devices instead of compact ones, they can be installed in:
(1) TN-S System:

$$
\begin{array}{lll}
\text { - } 2 \text { units of VP C40 275/1 } & \rightarrow 1 F+N+P E \\
\text { - } 3 \text { units of VP C40 275/1 } & \rightarrow 2 F+N+P E \text { or } 3 F+P E \\
\text { - } 4 \text { units of VP C40 } 275 / 1 & \rightarrow 3 F+N+P E
\end{array}
$$

TN-C System:

- 2 units of VP C40 275/1 $\quad \rightarrow \quad 2 \mathrm{~F}+\mathrm{NPE}$
- 3 units of VP C40 275/1
$\rightarrow 3 \mathrm{~F}+\mathrm{NPE}$
(3) TT System:
- 1 unit of VP C40 275/1 + 1 unit VP C40 250/NPE $\rightarrow 1 \mathrm{~F}+\mathrm{N}$
- 2 units of VP C40 275/1 + 1 unit VP C40 250/NPE
$2 F+N$
- 3 units of VP C40 275/1 + 1 unit VP C40 250/NPE $\rightarrow 3 F+N$ or $3 F$

DIMENSIONS (mm)

PHOTOVOLTAIC Applications

- Compact equipment for photovoltaic installations.
- High discharge capacity via zinc oxide varistors and gas dischargers.
- With thermal separation device.
- Visual indication of a fault in the equipment.
- Remote signalling of protection status.
- Plug-in protection modules which facilitate maintenance.

	PHOTOVOLTAIC APPLICATIONS	
Code	41605	41608
Model	VP C40 PV500	VP C40 PV1000
According to IEC 61643-1 (Class)	II	
Photovoltaic line	$2 \mathrm{~F}+\mathrm{PE}$	2F+PE
Maximum service voltage in direct current $\mathbf{U o c}_{\text {max }}(\mathrm{Vdc})$	< 500	< 1000
Maximum continuous operating voltage Uc (L-PE) (Vdc)	250	500
Nominal discharge current (8/20 $\mu \mathrm{s}$) In (kA)	20	
Maximum discharge current (8/20 $\mu \mathrm{s}$) Imax (kA)	40	
Protection level Up (kV)	< 1,8	< 3,6
Protection level at 5 kA (kV)	< 1,5	< 3
Response time ta (ns)	< 25	<25
Maximum back-up fuse ($\mathrm{A} \mathrm{gL} / \mathrm{gG}$)	125	125
N ${ }^{\circ}$ Modules	3	3
Plug-in modules code	41614	41616

C

DIMENSIONS (mm)

WIRING DIAGRAM

TN-S SYSTEM

$3 F+N+P E$

TN-C SYSTEM
$3 F+N P E$

TT SYSTEM
$3 \mathrm{~F}+\mathrm{N}$

WIND Power Applications

- Compact equipment for wind power installations.
- High discharge capacity via zinc oxide varistors and gas dischargers.
- With thermal separation device.
- Visual indication of a fault in the equipment.
- Remote signalling of protection status.
- Plug-in protection modules which facilitate maintenance.

	WIND POWER APPLICATIONS
Code	41622
Model	VP C30 600/3
According to IEC 61643-1 (Class)	II
Type of network	TT/TN
Eolic line	$\begin{gathered} 2 \mathrm{~F}+\mathrm{N}+\mathrm{PE} \\ 3 \mathrm{~F}+\mathrm{PE} \\ 3 \mathrm{~F}+\mathrm{NPE} \end{gathered}$
Nominal voltage Un (Vca)	600
Maximum continuous operating voltage Uc (Vca)	600
Nominal discharge current (8/20 $\mu \mathrm{s}$) $\mathbf{I n}(\mathrm{kA})$	15
Maximum discharge current (8/20 $\mu \mathrm{s}$) Imax (kA)	30
Protection level Up (kV)	<2,8
Protection level at 5 kA (kV)	< 2,4
Response time ta (ns)	<25
Maximum back-up fuse ($\mathrm{A} \mathrm{gL} / \mathrm{gG}$)	63
N° modules	3
Plug-in modules code	41623

WIRING DIAGRAM

Protection against Transient Overvoltage

SURGE ARRESTERS

Surge arrester for low voltage power supply systems. Protection against transient overvoltage that may arise in the electrical supply, at the boundaries
from lightning protection zone OB-1 and higher.

- UL 1449 3rd with SCCR 200KArms.
- MOV technology, high energy discharge capacity.
- Thermaly protected.
- Visual fault indication
- Remote signalling.
- Low voltage protection level.
- Metalic box.
- Surge event counter.
- Failure pre-test.
- Filtering function.

Ideal for applications with low discharge capacity required such as:

- Instalations with electronic equipments and microprocessor-based systems.
- Switchboards.
- Secondary panels.

TECHNICAL PARAMETERS

Model	SST480D200AF/M
Nominal voltage	480 V
Discharge capacity	200 KA
Maximum continuois operating voltaje Uc	550 V
Current counter	≥ 200 A (Reset button)
Failure pre-test	Press 2S (Test button)
Filtering	L-N, N-PE, L = PE
Power status indication	LED ON encendido $=$ OK
Working status indication	LED ON Blue = OK ; Blue LED ON Azul OFF y Red LED ON = FAILURE
Power connecting cable	$\begin{aligned} & 8 \text { AWG } \\ & \text { L1 = Yeloww } \\ & \text { L2 }=\text { Green } \\ & \text { L3 = Red } \\ & \text { N = Blue/Brown } \\ & \text { PE = Black } \end{aligned}$
Signal cable	$\begin{aligned} & 16 \text { AWG } \\ & C=\text { Red } \\ & \text { NC = Blue } \\ & \text { NO = Brown } \end{aligned}$
Working temperature range	$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Working humidity relative	$5-95 \%\left(25^{\circ} \mathrm{C}\right)$
Working altitude	$\leq 2 \mathrm{~km}$
Dimensions W \times D $\times H$ (mm)	$256 \times 205 \times 104$
Net weight	$5,4 \mathrm{Kg}$

	L-N	L-L	L-G
Nominal voltage level	N/A	480	480
Voltage protection ratings VPR @6KV/ 3KA)	N/A	2200	1900

SST

3 Hots + Grnd

Other models available

OTHER MODELS AVAILABLE

Code configuration for other models is done as follows:

Code: SST $\square \square / \mathbf{P}$ (Plastic) or M (Metal) | Optional functions: |
| :---: |
| C = Surge counter |
| $\mathrm{T}=$ Failure test |
| A= Remote alarm |
| $\mathrm{F}=$ Noise filtering |
| Max. surge current per phase (from 50KA - 300 KA/Phase) |
| Voltage for power distribution system |

Figures	Distribution diagrams	L-N	L-L	L-G	Model
Figure 1	$\begin{gathered} 2 \text { Hots }+1 \mathrm{Neu}+1 \text { Grnd } \\ (2 \mathrm{~L}+\mathrm{N}+\mathrm{G}) \end{gathered}$	120	240	120	120SP
Figure 2	$\begin{gathered} 3 \text { Hots }+1 \text { Neu }+1 \text { Grnd } \\ (3 L+N+G) \end{gathered}$	127	220	127	127Y
		220	380	220	$220 Y$
		240	415	240	$240 Y$
		277	480	277	277 Y
		347	600	347	347 Y
Figure 3	$\begin{gathered} 3 \text { Hots }+(\mathrm{B}-\mathrm{HIGH})+1 \text { Neu }+1 \text { Grnd } \\ (3 L+\mathrm{N}+\mathrm{G}) \end{gathered}$	120	240	120	120 H
Figure 4	$\begin{aligned} & 3 \text { Hots + Grnd } \\ & (3 L+G) \end{aligned}$	N/A	240	240	240D
		N/A	480	480	480D
		N/A	600	600	600D
Figure 5	$\underset{(\mathrm{L}+\mathrm{N}+\mathrm{G})}{1 \mathrm{Hot}+\underset{\mathrm{N}}{1} \mathrm{Neu}+1 \text { Grnd }}$	127	N/A	127	127S
		240	N/A	240	240S

"We fulfill our customers necessities adapting our product.

We give solutions"

CUSTOMIZED PRODUCTS AND BRANDLABELING

Introduction

Every day an increasing number of companies are considering the option of outsourcing their design and product development.

Fanox is the perfect technology partner to carry out these activities. Our R \& D department is prepared to operate as an integral part of our clients business - adapting to their needs by developing custom designs.
Fanox is a leader in the customization of products for reputable manufacturers, and we offer added value at a very competitive price. Fanox provides additional performance characteristics to the equipment thanks to continuous improvement of electronics - spear heading a rapidly moving technology sector.

We have high expertise in the area of electronics related to:

- Protection
- Control
- Measurement
- Communication

We provide you with important assets of high skills and experience in:

- Systems Engineering (Hardware, Software and Communication)
- Ability to adapt to different protocols (RTU's)
- Conformity and adaptation to international standards
- Design of systems and schemes tailored to the needs of customers
- Prototype design and production
- Testing
- Delivery of finished product - Brand Labelling

Some of our custom developments:

- Digital controller for fan coil units, which includes power and alarm management functions, which is incorporated in centralized control systems for hotels and large office buildings through Modbus communication protocol.
- Control equipment for electric transformer substations, which set levels of communication speed and immunity to external disturbances beyond the reach of any industrial PLC.
- Load limiter for lifting systems being used by leading manufacturers of overhead cranes and lifting platforms.
- Control and management of SF6 Switchgear for high/medium voltage substations.
- 3-Phase distribution line switch disconnection with incorporated Electronic Sectionaliser
- Fault passage detection system and geographical location of power failures in the section between an electrical substation and the consumer. Designed to detect faults in medium and high voltage, with remote real-time indication at Control Centre.
- Management Systems for Zigbee Communication protocols.

NifANOX

"A company focused on customer service and innovation"

Fanox is the perfect technology partner for companies that may arise the externalization of electronic products's design \& developmen in the field of the protection, control, measurement and communication.

The quality of all of our products has been certificated by independent \& recognized laboratories, and approved in several Electrical Utilities around the world.

KEMAね
labein)" VDE
(UL) Underwriters Laboratories Inc.

$c \in \mathbb{C}$

The quality of our products and services are in line with international standards.

100\% of Fanox relays are quality tested several times throughout the production process.

Fanox was by IQNET awarded the QUALITY MANAGEMENT SYSTEM certificate in 1993 ISO 9001:2008

As specialists in the design and manufacture of protection and control equipment for Low and Medium Voltage, all of our relays incorporate new industry trends: remote communication, high number of protection and control functions, self-designed software for control of each device etc., all in a competitive package.
All these improvements are aimed at facilitating the implementation of Smart Grid and predictive maintenance of networks, technologies defined as the medium term future of the electrical sector.

- protection \& control

Parque Tecnológico de Bizkaia
Astondo bidea, Edif. 604 48160 DERIO (Spain)
tel.: (+34) 944711409 fax.: (+34) 944710592 mail: fanox@fanox.com

[^0]: Note: Accessories, page 60-61.

[^1]: (*) Optional depending on the model

[^2]: (*) Depending on the model.

[^3]: Settings and curves, see pages 87 to 93

[^4]: Settings and curves, see pages 87 to 93.

[^5]: - Equipment with halogen-free wiring

[^6]: Settings and curves, see pages 87 to 93 .

[^7]: (*) After recovering normal conditions.

[^8]:

[^9]: (*) 4 Plug-in modules
 (**) 2 Plug-in modules

